Operator product expansion

Last updated

In quantum field theory, the operator product expansion (OPE) is used as an axiom to define the product of fields as a sum over the same fields. As an axiom, it offers a non-perturbative approach to quantum field theory. One example is the vertex operator algebra, which has been used to construct two-dimensional conformal field theories. Whether this result can be extended to QFT in general, thus resolving many of the difficulties of a perturbative approach, remains an open research question.

Contents

In practical calculations, such as those needed for scattering amplitudes in various collider experiments, the operator product expansion is used in QCD sum rules to combine results from both perturbative and non-perturbative (condensate) calculations.

2D Euclidean quantum field theory

In 2D Euclidean field theory, operator product expansion is a Laurent series expansion associated with two operators. A Laurent series is a generalization of the Taylor series in that finitely many powers of the inverse of the expansion variable(s) are added to the Taylor series: pole(s) of finite order(s) are added to the series.

Heuristically, in quantum field theory one is interested in the result of physical observables represented by operators. If one wants to know the result of making two physical observations at two points and , one can time order these operators in increasing time.

If one maps coordinates in a conformal manner, one is often interested in radial ordering. This is the analogue of time ordering where increasing time has been mapped to some increasing radius on the complex plane. One is also interested in normal ordering of creation operators.

A radial-ordered OPE can be written as a normal-ordered OPE minus the non-normal-ordered terms. The non-normal-ordered terms can often be written as a commutator, and these have useful simplifying identities. The radial ordering supplies the convergence of the expansion.

The result is a convergent expansion of the product of two operators in terms of some terms that have poles in the complex plane (the Laurent terms) and terms that are finite. This result represents the expansion of two operators at two different points as an expansion around just one point, where the poles represent where the two different points are the same point e.g.

.

Related to this is that an operator on the complex plane is in general written as a function of and . These are referred to as the holomorphic and anti-holomorphic parts respectively, as they are continuous and differentiable except at the (finite number of) singularities. One should really call them meromorphic, but holomorphic is common parlance. In general, the operator product expansion may not separate into holomorphic and anti-holomorphic parts, especially if there are terms in the expansion. However, derivatives of the OPE can often separate the expansion into holomorphic and anti-holomorphic expansions. This expression is also an OPE and in general is more useful.

Operator product algebra

In the generic case, one is given a set of fields (or operators) that are assumed to be valued over some algebra. For example, fixing x, the may be taken to span some Lie algebra. Setting x free to live on a manifold, the operator product is then simply some element in the ring of functions. In general, such rings do not possess enough structure to make meaningful statements; thus, one considers additional axioms to strengthen the system.

The operator product algebra is an associative algebra of the form

The structure constants are required to be single-valued functions, rather than sections of some vector bundle. Furthermore, the fields are required to span the ring of functions. In practical calculations, it is usually required that the sums be analytic within some radius of convergence; typically with a radius of convergence of . Thus, the ring of functions can be taken to be the ring of polynomial functions.

The above can be viewed as a requirement that is imposed on a ring of functions; imposing this requirement on the fields of a conformal field theory is known as the conformal bootstrap.

An example of an operator product algebra is the vertex operator algebra. It is currently hoped that operator product algebras can be used to axiomatize all of quantum field theory; they have successfully done so for the conformal field theories, and whether they can be used as a basis for non-perturbative QFT is an open research area.

Operator product expansion

In quantum field theory, the operator product expansion (OPE) is a convergent expansion of the product of two fields at different points as a sum (possibly infinite) of local fields.

More precisely, if is a point, and and are operator-valued fields, then there is an open neighborhood of such that for all

where the sum is over finitely or countably many terms, are operator-valued fields, are analytic functions over and the sum is convergent in the operator topology within .

OPEs are most often used in conformal field theory.

The notation is often used to denote that the difference G(x,y)-F(x,y) remains analytic at the points x=y. This is an equivalence relation.

Related Research Articles

<span class="mw-page-title-main">Complex analysis</span> Branch of mathematics studying functions of a complex variable

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

In mathematics, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of ring properties that are not specific to commutative rings. This distinction results from the high number of fundamental properties of commutative rings that do not extend to noncommutative rings.

In order theory, a field of mathematics, an incidence algebra is an associative algebra, defined for every locally finite partially ordered set and commutative ring with unity. Subalgebras called reduced incidence algebras give a natural construction of various types of generating functions used in combinatorics and number theory.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, a Hopf algebra, named after Heinz Hopf, is a structure that is simultaneously an algebra and a coalgebra, with these structures' compatibility making it a bialgebra, and that moreover is equipped with an antihomomorphism satisfying a certain property. The representation theory of a Hopf algebra is particularly nice, since the existence of compatible comultiplication, counit, and antipode allows for the construction of tensor products of representations, trivial representations, and dual representations.

A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified.

In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. It is a result of studies of linear algebra and the solutions of systems of linear equations and their generalizations. The theory is connected to that of analytic functions because the spectral properties of an operator are related to analytic functions of the spectral parameter.

In mathematics, monstrous moonshine, or moonshine theory, is the unexpected connection between the monster group M and modular functions, in particular, the j function. The initial numerical observation was made by John McKay in 1978, and the phrase was coined by John Conway and Simon P. Norton in 1979.

In mathematics and in theoretical physics, the Stone–von Neumann theorem refers to any one of a number of different formulations of the uniqueness of the canonical commutation relations between position and momentum operators. It is named after Marshall Stone and John von Neumann.

In mathematics, a vertex operator algebra (VOA) is an algebraic structure that plays an important role in two-dimensional conformal field theory and string theory. In addition to physical applications, vertex operator algebras have proven useful in purely mathematical contexts such as monstrous moonshine and the geometric Langlands correspondence.

In mathematics, infinite-dimensional holomorphy is a branch of functional analysis. It is concerned with generalizations of the concept of holomorphic function to functions defined and taking values in complex Banach spaces, typically of infinite dimension. It is one aspect of nonlinear functional analysis.

In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group, and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra. By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra.

In conformal field theory and representation theory, a W-algebra is an associative algebra that generalizes the Virasoro algebra. W-algebras were introduced by Alexander Zamolodchikov, and the name "W-algebra" comes from the fact that Zamolodchikov used the letter W for one of the elements of one of his examples.

In mathematical physics the Knizhnik–Zamolodchikov equations, or KZ equations, are linear differential equations satisfied by the correlation functions of two-dimensional conformal field theories associated with an affine Lie algebra at a fixed level. They form a system of complex partial differential equations with regular singular points satisfied by the N-point functions of affine primary fields and can be derived using either the formalism of Lie algebras or that of vertex algebras.

<span class="mw-page-title-main">Hilbert space</span> Type of topological vector space

In mathematics, Hilbert spaces allow the methods of linear algebra and calculus to be generalized from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise naturally and frequently in mathematics and physics, typically as function spaces. Formally, a Hilbert space is a vector space equipped with an inner product that induces a distance function for which the space is a complete metric space.

In mathematics, the Butcher group, named after the New Zealand mathematician John C. Butcher by Hairer & Wanner (1974), is an infinite-dimensional Lie group first introduced in numerical analysis to study solutions of non-linear ordinary differential equations by the Runge–Kutta method. It arose from an algebraic formalism involving rooted trees that provides formal power series solutions of the differential equation modeling the flow of a vector field. It was Cayley (1857), prompted by the work of Sylvester on change of variables in differential calculus, who first noted that the derivatives of a composition of functions can be conveniently expressed in terms of rooted trees and their combinatorics.

A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations.

The three-state Potts CFT, also known as the parafermion CFT, is a conformal field theory in two dimensions. It is a minimal model with central charge . It is considered to be the simplest minimal model with a non-diagonal partition function in Virasoro characters, as well as the simplest non-trivial CFT with the W-algebra as a symmetry.

Massless free scalar bosons are a family of two-dimensional conformal field theories, whose symmetry is described by an abelian affine Lie algebra.

In physics, the Gaudin model, sometimes known as the quantum Gaudin model, is a model, or a large class of models, in statistical mechanics first described in its simplest case by Michel Gaudin. They are exactly solvable models, and are also examples of quantum spin chains.

References