Conformal bootstrap

Last updated

The conformal bootstrap is a non-perturbative mathematical method to constrain and solve conformal field theories, i.e. models of particle physics or statistical physics that exhibit similar properties at different levels of resolution. [1]

Contents

Overview

Unlike more traditional techniques of quantum field theory, conformal bootstrap does not use the Lagrangian of the theory. Instead, it operates with the general axiomatic parameters, such as the scaling dimensions of the local operators and their operator product expansion coefficients. A key axiom is that the product of local operators must be expressible as a sum over local operators (thus turning the product into an algebra); the sum must have a non-zero radius of convergence. This leads to decompositions of correlation functions into structure constants and conformal blocks.

The main ideas of the conformal bootstrap were formulated in the 1970s by the Soviet physicist Alexander Polyakov [2] and the Italian physicists Sergio Ferrara, Raoul Gatto and Aurelio Grillo. [3] Other early pioneers of this idea were Gerhard Mack and Ivan Todorov.

In two dimensions, the conformal bootstrap was demonstrated to work in 1983 by Alexander Belavin, Alexander Polyakov and Alexander Zamolodchikov. [4] Many two-dimensional conformal field theories were solved using this method, notably the minimal models and the Liouville field theory.

In higher dimensions, the conformal bootstrap started to develop following the 2008 paper by Riccardo Rattazzi, Slava Rychkov, Erik Tonni and Alessandro Vichi. [5] The method was since used to obtain many general results about conformal and superconformal field theories in three, four, five and six dimensions. Applied to the conformal field theory describing the critical point of the three-dimensional Ising model, it produced the most precise predictions for its critical exponents. [6] [7] [8]

Current research

The international Simons Collaboration on the Nonperturbative Bootstrap unites researchers devoted to developing and applying the conformal bootstrap and other related techniques in quantum field theory. [9]

History of the name

The modern usage of the term "conformal bootstrap" was introduced in 1984 by Belavin et al. [4] In the earlier literature, the name was sometimes used to denote a different approach to conformal field theories, nowadays referred to as the skeleton expansion or the "old bootstrap". This older method is perturbative in nature, [10] [11] and is not directly related to the conformal bootstrap in the modern sense of the term.

Related Research Articles

A conformal field theory (CFT) is a quantum field theory that is invariant under conformal transformations. In two dimensions, there is an infinite-dimensional algebra of local conformal transformations, and conformal field theories can sometimes be exactly solved or classified.

In theoretical physics, the anti-de Sitter/conformal field theory correspondence, sometimes called Maldacena duality or gauge/gravity duality, is a conjectured relationship between two kinds of physical theories. On one side are anti-de Sitter spaces (AdS) which are used in theories of quantum gravity, formulated in terms of string theory or M-theory. On the other side of the correspondence are conformal field theories (CFT) which are quantum field theories, including theories similar to the Yang–Mills theories that describe elementary particles.

Alexander Markovich Polyakov is a Russian theoretical physicist, formerly at the Landau Institute in Moscow and, since 1990, at Princeton University, where he is the Joseph Henry Professor of Physics.

<span class="mw-page-title-main">Lambda point</span>

The lambda point is the temperature at which normal fluid helium makes the transition to superfluid helium II. The lowest pressure at which He-I and He-II can coexist is the vapor−He-I−He-II triple point at 2.1768 K (−270.9732 °C) and 5.0418 kPa (0.049759 atm), which is the "saturated vapor pressure" at that temperature. The highest pressure at which He-I and He-II can coexist is the bcc−He-I−He-II triple point with a helium solid at 1.762 K (−271.388 °C), 29.725 atm (3,011.9 kPa).

Critical exponents describe the behavior of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on some of its general features. For instance, for ferromagnetic systems, the critical exponents depend only on:

<span class="mw-page-title-main">History of quantum field theory</span>

In particle physics, the history of quantum field theory starts with its creation by Paul Dirac, when he attempted to quantize the electromagnetic field in the late 1920s. Heisenberg was awarded the 1932 Nobel Prize in Physics "for the creation of quantum mechanics". Major advances in the theory were made in the 1940s and 1950s, leading to the introduction of renormalized quantum electrodynamics (QED). QED was so successful and accurately predictive that efforts were made to apply the same basic concepts for the other forces of nature. By the late 1970s, these efforts successfully utilized gauge theory in the strong nuclear force and weak nuclear force, producing the modern Standard Model of particle physics.

In theoretical physics, a primary field, also called a primary operator, or simply a primary, is a local operator in a conformal field theory which is annihilated by the part of the conformal algebra consisting of the lowering generators. From the representation theory point of view, a primary is the lowest dimension operator in a given representation of the conformal algebra. All other operators in a representation are called descendants; they can be obtained by acting on the primary with the raising generators.

In theoretical physics, boundary conformal field theory (BCFT) is a conformal field theory defined on a spacetime with a boundary. Different kinds of boundary conditions for the fields may be imposed on the fundamental fields; for example, Neumann boundary condition or Dirichlet boundary condition is acceptable for free bosonic fields. BCFT was developed by John Cardy.

Igor Romanovich Klebanov is an American theoretical physicist. Since 1989, he has been a faculty member at Princeton University where he is currently a Eugene Higgins Professor of Physics and the Director of the Princeton Center for Theoretical Science. In 2016, he was elected to the National Academy of Sciences. Since 2022, he is the Director of the Simons Collaboration on Confinement and QCD Strings.

In quantum field theory the C-theorem states that there exists a positive real function, , depending on the coupling constants of the quantum field theory considered, , and on the energy scale, , which has the following properties:

<span class="mw-page-title-main">Alexander Zamolodchikov</span> Russian physicist

Alexander Borisovich Zamolodchikov is a Russian physicist, known for his contributions to condensed matter physics, two-dimensional conformal field theory, and string theory, and is currently the C.N. Yang/Wei Deng Endowed Chair of Physics at Stony Brook University.

Alexander "Sasha" Abramovich Belavin is a Russian physicist, known for his contributions to string theory.

This article lists the critical exponents of the ferromagnetic transition in the Ising model. In statistical physics, the Ising model is the simplest system exhibiting a continuous phase transition with a scalar order parameter and symmetry. The critical exponents of the transition are universal values and characterize the singular properties of physical quantities. The ferromagnetic transition of the Ising model establishes an important universality class, which contains a variety of phase transitions as different as ferromagnetism close to the Curie point and critical opalescence of liquid near its critical point.

In physics, Liouville field theory is a two-dimensional conformal field theory whose classical equation of motion is a generalization of Liouville's equation.

<span class="mw-page-title-main">Riccardo Rattazzi</span>

Riccardo Rattazzi is an Italian theoretical physicist and a professor at the École Polytechnique Fédérale de Lausanne. His main research interests are in physics beyond the Standard Model and in cosmology.

A two-dimensional conformal field theory is a quantum field theory on a Euclidean two-dimensional space, that is invariant under local conformal transformations.

Higher-spin theory or higher-spin gravity is a common name for field theories that contain massless fields of spin greater than two. Usually, the spectrum of such theories contains the graviton as a massless spin-two field, which explains the second name. Massless fields are gauge fields and the theories should be (almost) completely fixed by these higher-spin symmetries. Higher-spin theories are supposed to be consistent quantum theories and, for this reason, to give examples of quantum gravity. Most of the interest in the topic is due to the AdS/CFT correspondence where there is a number of conjectures relating higher-spin theories to weakly coupled conformal field theories. It is important to note that only certain parts of these theories are known at present and not many examples have been worked out in detail except some specific toy models.

<span class="mw-page-title-main">Claude Itzykson</span> French theoretical physicist (1938–1995)

Claude Georges Itzykson, was a French theoretical physicist who worked in quantum field theory and statistical mechanics.

Vyacheslav Rychkov is a Russian-Italian-French theoretical physicist and mathematician.

Zohar Komargodski is an Israeli theoretical physicist who works on quantum field theory, including conformal field theories, gauge theories and supersymmetry.

References

  1. "Using the 'Bootstrap,' Physicists Uncover Geometry of Theory Space | Quanta Magazine". Quanta Magazine. Retrieved 2018-01-03.
  2. Polyakov, A. M. (1974). "Nonhamiltonian approach to conformal quantum field theory". Zh. Eksp. Teor. Fiz. 66: 23–42. Bibcode:1974JETP...39...10P.
  3. Ferrara, S.; Grillo, A. F.; Gatto, R. (1973). "Tensor representations of conformal algebra and conformally covariant operator product expansion". Annals of Physics. 76 (1): 161–188. Bibcode:1973AnPhy..76..161F. doi:10.1016/0003-4916(73)90446-6.
  4. 1 2 Belavin, A.A.; Polyakov, A.M.; Zamolodchikov, A.B. (1984). "Infinite conformal symmetry in two-dimensional quantum field theory". Nuclear Physics B. 241 (2): 333–380. Bibcode:1984NuPhB.241..333B. doi:10.1016/0550-3213(84)90052-X. ISSN   0550-3213.
  5. Rattazzi, Riccardo; Rychkov, Vyacheslav S.; Tonni, Erik; Vichi, Alessandro (2008). "Bounding scalar operator dimensions in 4D CFT". JHEP. 2008 (12): 031. arXiv: 0807.0004 . Bibcode:2008JHEP...12..031R. doi:10.1088/1126-6708/2008/12/031. S2CID   8954304.
  6. El-Showk, Sheer; Paulos, Miguel F.; Poland, David; Rychkov, Slava; Simmons-Duffin, David; Vichi, Alessandro (2014). "Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents". Journal of Statistical Physics. 157 (4–5): 869–914. arXiv: 1403.4545 . Bibcode:2014JSP...157..869E. doi:10.1007/s10955-014-1042-7. S2CID   39692193.
  7. Simmons-Duffin, David (2015). "A semidefinite program solver for the conformal bootstrap". Journal of High Energy Physics. 2015 (6): 174. arXiv: 1502.02033 . Bibcode:2015JHEP...06..174S. doi:10.1007/JHEP06(2015)174. ISSN   1029-8479. S2CID   35625559.
  8. Kadanoff, Leo P. (April 30, 2014). "Deep Understanding Achieved on the 3d Ising Model". Journal Club for Condensed Matter Physics. Archived from the original on July 22, 2015. Retrieved July 18, 2015.
  9. "Foundation Announces Simons Collaboration on the Non-Perturbative Bootstrap". 2016-08-25.
  10. Migdal, Alexander A. (1971). "Conformal invariance and bootstrap". Phys. Lett. B37 (4): 386–388. Bibcode:1971PhLB...37..386M. doi:10.1016/0370-2693(71)90211-5.
  11. Parisi, G. (1972). "On self-consistency conditions in conformal covariant field theory". Lettere al Nuovo Cimento. 4S2 (15): 777–780. doi:10.1007/BF02757039. S2CID   121431808.