Sigma model

Last updated

In physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the skyrmion for the Skyrme model. When the sigma field is coupled to a gauge field, the resulting model is described by Ginzburg–Landau theory. This article is primarily devoted to the classical field theory of the sigma model; the corresponding quantized theory is presented in the article titled "non-linear sigma model".

Contents

Overview

The name has roots in particle physics, where a sigma model describes the interactions of pions. Unfortunately, the "sigma meson" is not described by the sigma-model, but only a component of it. [1]

The sigma model was introduced by Gell-Mann & Lévy (1960 , section 5); the name σ-model comes from a field in their model corresponding to a spinless meson called σ, a scalar meson introduced earlier by Julian Schwinger. [2] The model served as the dominant prototype of spontaneous symmetry breaking of O(4) down to O(3): the three axial generators broken are the simplest manifestation of chiral symmetry breaking, the surviving unbroken O(3) representing isospin.

In conventional particle physics settings, the field is generally taken to be SU(N), or the vector subspace of quotient of the product of left and right chiral fields. In condensed matter theories, the field is taken to be O(N). For the rotation group O(3), the sigma model describes the isotropic ferromagnet; more generally, the O(N) model shows up in the quantum Hall effect, superfluid Helium-3 and spin chains.

In supergravity models, the field is taken to be a symmetric space. Since symmetric spaces are defined in terms of their involution, their tangent space naturally splits into even and odd parity subspaces. This splitting helps propel the dimensional reduction of Kaluza–Klein theories.

In its most basic form, the sigma model can be taken as being purely the kinetic energy of a point particle; as a field, this is just the Dirichlet energy in Euclidean space.

In two spatial dimensions, the O(3) model is completely integrable.

Definition

The Lagrangian density of the sigma model can be written in a variety of different ways, each suitable to a particular type of application. The simplest, most generic definition writes the Lagrangian as the metric trace of the pullback of the metric tensor on a Riemannian manifold. For a field over a spacetime , this may be written as

where the is the metric tensor on the field space , and the are the derivatives on the underlying spacetime manifold.

This expression can be unpacked a bit. The field space can be chosen to be any Riemannian manifold. Historically, this is the "sigma" of the sigma model; the historically-appropriate symbol is avoided here to prevent clashes[ which? ] with many other common usages of in geometry. Riemannian manifolds always come with a metric tensor . Given an atlas of charts on , the field space can always be locally trivialized, in that given in the atlas, one may write a map giving explicit local coordinates on that patch. The metric tensor on that patch is a matrix having components

The base manifold must be a differentiable manifold; by convention, it is either Minkowski space in particle physics applications, flat two-dimensional Euclidean space for condensed matter applications, or a Riemann surface, the worldsheet in string theory. The is just the plain-old covariant derivative on the base spacetime manifold When is flat, is just the ordinary gradient of a scalar function (as is a scalar field, from the point of view of itself.) In more precise language, is a section of the jet bundle of .

Example: O(n) non-linear sigma model

Taking the Kronecker delta, i.e. the scalar dot product in Euclidean space, one gets the non-linear sigma model. That is, write to be the unit vector in , so that , with the ordinary Euclidean dot product. Then the -sphere, the isometries of which are the rotation group . The Lagrangian can then be written as

For , this is the continuum limit of the isotropic ferromagnet on a lattice, i.e. of the classical Heisenberg model. For , this is the continuum limit of the classical XY model. See also the n-vector model and the Potts model for reviews of the lattice model equivalents. The continuum limit is taken by writing

as the finite difference on neighboring lattice locations Then in the limit , and after dropping the constant terms (the "bulk magnetization").

In geometric notation

The sigma model can also be written in a more fully geometric notation, as a fiber bundle with fibers over a differentiable manifold . Given a section , fix a point The pushforward at is a map of tangent bundles

taking

where is taken to be a local orthonormal vector space basis on and the vector space basis on . The is a differential form. The sigma model action is then just the conventional inner product on vector-valued k-forms

where the is the wedge product, and the is the Hodge star. This is an inner product in two different ways. In the first way, given any two differentiable forms in , the Hodge dual defines an invariant inner product on the space of differential forms, commonly written as

The above is an inner product on the space of square-integrable forms, conventionally taken to be the Sobolev space In this way, one may write

.

This makes it explicit and plainly evident that the sigma model is just the kinetic energy of a point particle. From the point of view of the manifold , the field is a scalar, and so can be recognized just the ordinary gradient of a scalar function. The Hodge star is merely a fancy device for keeping track of the volume form when integrating on curved spacetime. In the case that is flat, it can be completely ignored, and so the action is

,

which is the Dirichlet energy of . Classical extrema of the action (the solutions to the Lagrange equations) are then those field configurations that minimize the Dirichlet energy of . Another way to convert this expression into a more easily-recognizable form is to observe that, for a scalar function one has and so one may also write

where is the Laplace–Beltrami operator, i.e., the ordinary Laplacian when is flat.

That there is another, second inner product in play simply requires not forgetting that is a vector from the point of view of itself. That is, given any two vectors , the Riemannian metric defines an inner product

Since is vector-valued on local charts, one also takes the inner product there as well. More verbosely,

.

The tension between these two inner products can be made even more explicit by noting that

is a bilinear form; it is a pullback of the Riemann metric . The individual can be taken as vielbeins. The Lagrangian density of the sigma model is then

for the metric on Given this gluing-together, the can be interpreted as a solder form; this is articulated more fully below.

Motivations and basic interpretations

Several interpretational and foundational remarks can be made about the classical (non-quantized) sigma model. The first of these is that the classical sigma model can be interpreted as a model of non-interacting quantum mechanics. The second concerns the interpretation of energy.

Interpretation as quantum mechanics

This follows directly from the expression

given above. Taking , the function can be interpreted as a wave function, and its Laplacian the kinetic energy of that wave function. The is just some geometric machinery reminding one to integrate over all space. The corresponding quantum mechanical notation is In flat space, the Laplacian is conventionally written as . Assembling all these pieces together, the sigma model action is equivalent to

which is just the grand-total kinetic energy of the wave-function , up to a factor of . To conclude, the classical sigma model on can be interpreted as the quantum mechanics of a free, non-interacting quantum particle. Obviously, adding a term of to the Lagrangian results in the quantum mechanics of a wave-function in a potential. Taking is not enough to describe the -particle system, in that particles require distinct coordinates, which are not provided by the base manifold. This can be solved by taking copies of the base manifold.

The solder form

It is very well-known that the geodesic structure of a Riemannian manifold is described by the Hamilton–Jacobi equations. [3] In thumbnail form, the construction is as follows. Both and are Riemannian manifolds; the below is written for , the same can be done for . The cotangent bundle , supplied with coordinate charts, can always be locally trivialized, i.e.

The trivialization supplies canonical coordinates on the cotangent bundle. Given the metric tensor on , define the Hamiltonian function

where, as always, one is careful to note that the inverse of the metric is used in this definition: Famously, the geodesic flow on is given by the Hamilton–Jacobi equations

and

The geodesic flow is the Hamiltonian flow; the solutions to the above are the geodesics of the manifold. Note, incidentally, that along geodesics; the time parameter is the distance along the geodesic.

The sigma model takes the momenta in the two manifolds and and solders them together, in that is a solder form. In this sense, the interpretation of the sigma model as an energy functional is not surprising; it is in fact the gluing together of two energy functionals. Caution: the precise definition of a solder form requires it to be an isomorphism; this can only happen if and have the same real dimension. Furthermore, the conventional definition of a solder form takes to be a Lie group. Both conditions are satisfied in various applications.

Results on various spaces

The space is often taken to be a Lie group, usually SU(N), in the conventional particle physics models, O(N) in condensed matter theories, or as a symmetric space in supergravity models. Since symmetric spaces are defined in terms of their involution, their tangent space (i.e. the place where lives) naturally splits into even and odd parity subspaces. This splitting helps propel the dimensional reduction of Kaluza–Klein theories.

On Lie groups

For the special case of being a Lie group, the is the metric tensor on the Lie group, formally called the Cartan tensor or the Killing form. The Lagrangian can then be written as the pullback of the Killing form. Note that the Killing form can be written as a trace over two matrices from the corresponding Lie algebra; thus, the Lagrangian can also be written in a form involving the trace. With slight re-arrangements, it can also be written as the pullback of the Maurer–Cartan form.

On symmetric spaces

A common variation of the sigma model is to present it on a symmetric space. The prototypical example is the chiral model, which takes the product

of the "left" and "right" chiral fields, and then constructs the sigma model on the "diagonal"

Such a quotient space is a symmetric space, and so one can generically take where is the maximal subgroup of that is invariant under the Cartan involution. The Lagrangian is still written exactly as the above, either in terms of the pullback of the metric on to a metric on or as a pullback of the Maurer–Cartan form.

Trace notation

In physics, the most common and conventional statement of the sigma model begins with the definition

Here, the is the pullback of the Maurer–Cartan form, for , onto the spacetime manifold. The is a projection onto the odd-parity piece of the Cartan involution. That is, given the Lie algebra of , the involution decomposes the space into odd and even parity components corresponding to the two eigenstates of the involution. The sigma model Lagrangian can then be written as

This is instantly recognizable as the first term of the Skyrme model.

Metric form

The equivalent metric form of this is to write a group element as the geodesic of an element of the Lie algebra . The are the basis elements for the Lie algebra; the are the structure constants of .

Plugging this directly into the above and applying the infinitesimal form of the Baker–Campbell–Hausdorff formula promptly leads to the equivalent expression

where is now obviously (proportional to) the Killing form, and the are the vielbeins that express the "curved" metric in terms of the "flat" metric . The article on the Baker–Campbell–Hausdorff formula provides an explicit expression for the vielbeins. They can be written as

where is a matrix whose matrix elements are .

For the sigma model on a symmetric space, as opposed to a Lie group, the are limited to span the subspace instead of all of . The Lie commutator on will not be within ; indeed, one has and so a projection is still needed.

Extensions

The model can be extended in a variety of ways. Besides the aforementioned Skyrme model, which introduces quartic terms, the model may be augmented by a torsion term to yield the Wess–Zumino–Witten model.

Another possibility is frequently seen in supergravity models. Here, one notes that the Maurer–Cartan form looks like "pure gauge". In the construction above for symmetric spaces, one can also consider the other projection

where, as before, the symmetric space corresponded to the split . This extra term can be interpreted as a connection on the fiber bundle (it transforms as a gauge field). It is what is "left over" from the connection on . It can be endowed with its own dynamics, by writing

with . Note that the differential here is just "d", and not a covariant derivative; this is not the Yang–Mills stress-energy tensor. This term is not gauge invariant by itself; it must be taken together with the part of the connection that embeds into , so that taken together, the , now with the connection as a part of it, together with this term, forms a complete gauge invariant Lagrangian (which does have the Yang–Mills terms in it, when expanded out).

Related Research Articles

<span class="mw-page-title-main">Stress–energy tensor</span> Tensor describing energy momentum density in spacetime

The stress–energy tensor, sometimes called the stress–energy–momentum tensor or the energy–momentum tensor, is a tensor physical quantity that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. This density and flux of energy and momentum are the sources of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

In information geometry, the Fisher information metric is a particular Riemannian metric which can be defined on a smooth statistical manifold, i.e., a smooth manifold whose points are probability distributions. It can be used to calculate the distance between probability distributions.

In mathematics, a Killing vector field, named after Wilhelm Killing, is a vector field on a pseudo-Riemannian manifold that preserves the metric tensor. Killing vector fields are the infinitesimal generators of isometries; that is, flows generated by Killing vector fields are continuous isometries of the manifold. More simply, the flow generates a symmetry, in the sense that moving each point of an object the same distance in the direction of the Killing vector will not distort distances on the object.

In theoretical physics and mathematics, a Wess–Zumino–Witten (WZW) model, also called a Wess–Zumino–Novikov–Witten model, is a type of two-dimensional conformal field theory named after Julius Wess, Bruno Zumino, Sergei Novikov and Edward Witten. A WZW model is associated to a Lie group, and its symmetry algebra is the affine Lie algebra built from the corresponding Lie algebra. By extension, the name WZW model is sometimes used for any conformal field theory whose symmetry algebra is an affine Lie algebra.

In general relativity, the Gibbons–Hawking–York boundary term is a term that needs to be added to the Einstein–Hilbert action when the underlying spacetime manifold has a boundary.

In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory. It is a special case of 4D N = 1 global supersymmetry.

In theoretical physics, Seiberg–Witten theory is an supersymmetric gauge theory with an exact low-energy effective action, of which the kinetic part coincides with the Kähler potential of the moduli space of vacua. Before taking the low-energy effective action, the theory is known as supersymmetric Yang–Mills theory, as the field content is a single vector supermultiplet, analogous to the field content of Yang–Mills theory being a single vector gauge field or connection.

In theoretical physics, a source is an abstract concept, developed by Julian Schwinger, motivated by the physical effects of surrounding particles involved in creating or destroying another particle. So, one can perceive sources as the origin of the physical properties carried by the created or destroyed particle, and thus one can use this concept to study all quantum processes including the spacetime localized properties and the energy forms, i.e., mass and momentum, of the phenomena. The probability amplitude of the created or the decaying particle is defined by the effect of the source on a localized spacetime region such that the affected particle captures its physics depending on the tensorial and spinorial nature of the source. An example that Julian Schwinger referred to is the creation of meson due to the mass correlations among five mesons.

In theoretical physics, a scalar–tensor theory is a field theory that includes both a scalar field and a tensor field to represent a certain interaction. For example, the Brans–Dicke theory of gravitation uses both a scalar field and a tensor field to mediate the gravitational interaction.

In mathematics, specifically in symplectic geometry, the momentum map is a tool associated with a Hamiltonian action of a Lie group on a symplectic manifold, used to construct conserved quantities for the action. The momentum map generalizes the classical notions of linear and angular momentum. It is an essential ingredient in various constructions of symplectic manifolds, including symplectic (Marsden–Weinstein) quotients, discussed below, and symplectic cuts and sums.

In theoretical physics, scalar field theory can refer to a relativistically invariant classical or quantum theory of scalar fields. A scalar field is invariant under any Lorentz transformation.

In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.

In physics, Berry connection and Berry curvature are related concepts which can be viewed, respectively, as a local gauge potential and gauge field associated with the Berry phase or geometric phase. The concept was first introduced by S. Pancharatnam as geometric phase and later elaborately explained and popularized by Michael Berry in a paper published in 1984 emphasizing how geometric phases provide a powerful unifying concept in several branches of classical and quantum physics.

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

<span class="mw-page-title-main">Lie algebra extension</span> Creating a "larger" Lie algebra from a smaller one, in one of several ways

In the theory of Lie groups, Lie algebras and their representation theory, a Lie algebra extensione is an enlargement of a given Lie algebra g by another Lie algebra h. Extensions arise in several ways. There is the trivial extension obtained by taking a direct sum of two Lie algebras. Other types are the split extension and the central extension. Extensions may arise naturally, for instance, when forming a Lie algebra from projective group representations. Such a Lie algebra will contain central charges.

In quantum field theory, scalar chromodynamics, also known as scalar quantum chromodynamics or scalar QCD, is a gauge theory consisting of a gauge field coupled to a scalar field. This theory is used experimentally to model the Higgs sector of the Standard Model.

In theoretical physics, more specifically in quantum field theory and supersymmetry, supersymmetric Yang–Mills, also known as super Yang–Mills and abbreviated to SYM, is a supersymmetric generalization of Yang–Mills theory, which is a gauge theory that plays an important part in the mathematical formulation of forces in particle physics. It is a special case of 4D N = 1 global supersymmetry.

In supersymmetry, 4D global supersymmetry is the theory of global supersymmetry in four dimensions with a single supercharge. It consists of an arbitrary number of chiral and vector supermultiplets whose possible interactions are strongly constrained by supersymmetry, with the theory primarily fixed by three functions: the Kähler potential, the superpotential, and the gauge kinetic matrix. Many common models of supersymmetry are special cases of this general theory, such as the Wess–Zumino model, super Yang–Mills theory, and the Minimal Supersymmetric Standard Model. When gravity is included, the result is described by 4D supergravity.

In supersymmetry, 4D supergravity is the theory of supergravity in four dimensions with a single supercharge. It contains exactly one supergravity multiplet, consisting of a graviton and a gravitino, but can also have an arbitrary number of chiral and vector supermultiplets, with supersymmetry imposing stringent constraints on how these can interact. The theory is primarily determined by three functions, those being the Kähler potential, the superpotential, and the gauge kinetic matrix. Many of its properties are strongly linked to the geometry associated to the scalar fields in the chiral multiplets. After the simplest form of this supergravity was first discovered, a theory involving only the supergravity multiplet, the following years saw an effort to incorporate different matter multiplets, with the general action being derived in 1982 by Eugène Cremmer, Sergio Ferrara, Luciano Girardello, and Antonie Van Proeyen.

References

  1. page 114, David Tong: Lectures on Statistical Field Theory
  2. Julian S. Schwinger, "A Theory of the Fundamental Interactions", Ann. Phys.2(407), 1957.
  3. Jurgen Jost (1991) Riemannian Geometry and Geometric Analysis, Springer