N-vector model

Last updated

In statistical mechanics, the n-vector model or O(n) model is a simple system of interacting spins on a crystalline lattice. It was developed by H. Eugene Stanley as a generalization of the Ising model, XY model and Heisenberg model. [1] In the n-vector model, n-component unit-length classical spins are placed on the vertices of a d-dimensional lattice. The Hamiltonian of the n-vector model is given by:

Contents

where the sum runs over all pairs of neighboring spins and denotes the standard Euclidean inner product. Special cases of the n-vector model are:

: The self-avoiding walk [2] [3]
: The Ising model
: The XY model
: The Heisenberg model
: Toy model for the Higgs sector of the Standard Model

The general mathematical formalism used to describe and solve the n-vector model and certain generalizations are developed in the article on the Potts model.

Reformulation as a loop model

In a small coupling expansion, the weight of a configuration may be rewritten as

Integrating over the vector gives rise to expressions such as

which is interpreted as a sum over the 3 possible ways of connecting the vertices pairwise using 2 lines going through vertex . Integrating over all vectors, the corresponding lines combine into closed loops, and the partition function becomes a sum over loop configurations:

where is the set of loop configurations, with the number of loops in the configuration , and the total number of lattice edges.

In two dimensions, it is common to assume that loops do not cross: either by choosing the lattice to be trivalent, or by considering the model in a dilute phase where crossings are irrelevant, or by forbidding crossings by hand. The resulting model of non-intersecting loops can then be studied using powerful algebraic methods, and its spectrum is exactly known. [4] Moreover, the model is closely related to the random cluster model, which can also be formulated in terms of non-crossing loops. Much less is known in models where loops are allowed to cross, and in higher than two dimensions.

Continuum limit

The continuum limit can be understood to be the sigma model. This can be easily obtained by writing the Hamiltonian in terms of the product

where is the "bulk magnetization" term. Dropping this term as an overall constant factor added to the energy, the limit is obtained by defining the Newton finite difference as

on neighboring lattice locations Then in the limit , where is the gradient in the direction. Thus, in the limit,

which can be recognized as the kinetic energy of the field in the sigma model. One still has two possibilities for the spin : it is either taken from a discrete set of spins (the Potts model) or it is taken as a point on the sphere ; that is, is a continuously-valued vector of unit length. In the later case, this is referred to as the non-linear sigma model, as the rotation group is group of isometries of , and obviously, isn't "flat", i.e. isn't a linear field.

Conformal field theory

At the critical temperature and in the continuum limit, the model gives rise to a conformal field theory called the critical O(n) model. This CFT can be analyzed using expansions in the dimension d or in n, or using the conformal bootstrap approach. Its conformal data are functions of d and n, on which many results are known. [5]

Related Research Articles

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices that are traceless, Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

The Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

<span class="mw-page-title-main">Mie scattering</span> Scattering of an electromagnetic plane wave by a sphere

In electromagnetism, the Mie solution to Maxwell's equations describes the scattering of an electromagnetic plane wave by a homogeneous sphere. The solution takes the form of an infinite series of spherical multipole partial waves. It is named after German physicist Gustav Mie.

A Newtonian fluid is a fluid in which the viscous stresses arising from its flow are at every point linearly correlated to the local strain rate — the rate of change of its deformation over time. Stresses are proportional to the rate of change of the fluid's velocity vector.

In multivariable calculus, the directional derivative measures the rate at which a function changes in a particular direction at a given point.

<span class="mw-page-title-main">Magnetic moment</span> Magnetic strength and orientation of an object that produces a magnetic field

In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied, objects with larger magnetic moments experience larger torques. The strength of this torque depends not only on the magnitude of the magnetic moment but also on its orientation relative to the direction of the magnetic field. Its direction points from the south pole to north pole of the magnet.

Geometrical optics, or ray optics, is a model of optics that describes light propagation in terms of rays. The ray in geometrical optics is an abstraction useful for approximating the paths along which light propagates under certain circumstances.

The classical XY model is a lattice model of statistical mechanics. In general, the XY model can be seen as a specialization of Stanley's n-vector model for n = 2.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

In condensed matter physics, a spin wave is a propagating disturbance in the ordering of a magnetic material. These low-lying collective excitations occur in magnetic lattices with continuous symmetry. From the equivalent quasiparticle point of view, spin waves are known as magnons, which are bosonic modes of the spin lattice that correspond roughly to the phonon excitations of the nuclear lattice. As temperature is increased, the thermal excitation of spin waves reduces a ferromagnet's spontaneous magnetization. The energies of spin waves are typically only μeV in keeping with typical Curie points at room temperature and below.

In physics, a sigma model is a field theory that describes the field as a point particle confined to move on a fixed manifold. This manifold can be taken to be any Riemannian manifold, although it is most commonly taken to be either a Lie group or a symmetric space. The model may or may not be quantized. An example of the non-quantized version is the Skyrme model; it cannot be quantized due to non-linearities of power greater than 4. In general, sigma models admit (classical) topological soliton solutions, for example, the skyrmion for the Skyrme model. When the sigma field is coupled to a gauge field, the resulting model is described by Ginzburg–Landau theory. This article is primarily devoted to the classical field theory of the sigma model; the corresponding quantized theory is presented in the article titled "non-linear sigma model".

The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:

In quantum mechanics, the probability current is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time. Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-1/2 particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927. In its linearized form it is known as Lévy-Leblond equation.

The tetrad formalism is an approach to general relativity that generalizes the choice of basis for the tangent bundle from a coordinate basis to the less restrictive choice of a local basis, i.e. a locally defined set of four linearly independent vector fields called a tetrad or vierbein. It is a special case of the more general idea of a vielbein formalism, which is set in (pseudo-)Riemannian geometry. This article as currently written makes frequent mention of general relativity; however, almost everything it says is equally applicable to (pseudo-)Riemannian manifolds in general, and even to spin manifolds. Most statements hold simply by substituting arbitrary for . In German, "vier" translates to "four", "viel" to "many", and "bein" to "leg".

The quantization of the electromagnetic field is a procedure in physics turning Maxwell's classical electromagnetic waves into particles called photons. Photons are massless particles of definite energy, definite momentum, and definite spin.

The quantum rotor model is a mathematical model for a quantum system. It can be visualized as an array of rotating electrons which behave as rigid rotors that interact through short-range dipole-dipole magnetic forces originating from their magnetic dipole moments. The model differs from similar spin-models such as the Ising model and the Heisenberg model in that it includes a term analogous to kinetic energy.

The neutrino theory of light is the proposal that the photon is a composite particle formed of a neutrino–antineutrino pair. It is based on the idea that emission and absorption of a photon corresponds to the creation and annihilation of a particle–antiparticle pair. The neutrino theory of light is not currently accepted as part of mainstream physics, as according to the Standard Model the photon is an elementary particle, a gauge boson.

<span class="mw-page-title-main">Loop representation in gauge theories and quantum gravity</span> Description of gauge theories using loop operators

Attempts have been made to describe gauge theories in terms of extended objects such as Wilson loops and holonomies. The loop representation is a quantum hamiltonian representation of gauge theories in terms of loops. The aim of the loop representation in the context of Yang–Mills theories is to avoid the redundancy introduced by Gauss gauge symmetries allowing to work directly in the space of physical states. The idea is well known in the context of lattice Yang–Mills theory. Attempts to explore the continuous loop representation was made by Gambini and Trias for canonical Yang–Mills theory, however there were difficulties as they represented singular objects. As we shall see the loop formalism goes far beyond a simple gauge invariant description, in fact it is the natural geometrical framework to treat gauge theories and quantum gravity in terms of their fundamental physical excitations.

In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.

References

  1. Stanley, H. E. (1968). "Dependence of Critical Properties upon Dimensionality of Spins". Phys. Rev. Lett. 20 (12): 589–592. Bibcode:1968PhRvL..20..589S. doi:10.1103/PhysRevLett.20.589.
  2. de Gennes, P. G. (1972). "Exponents for the excluded volume problem as derived by the Wilson method". Phys. Lett. A. 38 (5): 339–340. Bibcode:1972PhLA...38..339D. doi:10.1016/0375-9601(72)90149-1.
  3. Gaspari, George; Rudnick, Joseph (1986). "n-vector model in the limit n→0 and the statistics of linear polymer systems: A Ginzburg–Landau theory". Phys. Rev. B. 33 (5): 3295–3305. Bibcode:1986PhRvB..33.3295G. doi:10.1103/PhysRevB.33.3295. PMID   9938709.
  4. Jacobsen, Jesper Lykke; Ribault, Sylvain; Saleur, Hubert (2023-05-03). "Spaces of states of the two-dimensional $O(n)$ and Potts models". SciPost Physics. 14 (5). arXiv: 2208.14298 . doi: 10.21468/scipostphys.14.5.092 . ISSN   2542-4653.
  5. Henriksson, Johan (2023). "The critical O(N) CFT: Methods and conformal data". Physics Reports. 1002. Elsevier BV: 1–72. doi: 10.1016/j.physrep.2022.12.002 . ISSN   0370-1573 . Retrieved 2025-01-14.