In measure theory, or at least in the approach to it via the domain theory, a valuation is a map from the class of open sets of a topological space to the set of positive real numbers including infinity, with certain properties. It is a concept closely related to that of a measure, and as such, it finds applications in measure theory, probability theory, and theoretical computer science.
Let be a topological space: a valuation is any set function
satisfying the following three properties
The definition immediately shows the relationship between a valuation and a measure: the properties of the two mathematical object are often very similar if not identical, the only difference being that the domain of a measure is the Borel algebra of the given topological space, while the domain of a valuation is the class of open sets. Further details and references can be found in Alvarez-Manilla, Edalat & Saheb-Djahromi 2000 and Goubault-Larrecq 2005.
A valuation (as defined in domain theory/measure theory) is said to be continuous if for every directed familyof open sets (i.e. an indexed family of open sets which is also directed in the sense that for each pair of indexes and belonging to the index set , there exists an index such that and ) the following equality holds:
This property is analogous to the τ-additivity of measures.
A valuation (as defined in domain theory/measure theory) is said to be simple if it is a finite linear combination with non-negative coefficients of Dirac valuations, that is,
where is always greater than or at least equal to zero for all index . Simple valuations are obviously continuous in the above sense. The supremum of a directed family of simple valuations (i.e. an indexed family of simple valuations which is also directed in the sense that for each pair of indexes and belonging to the index set , there exists an index such that and ) is called quasi-simple valuation
Let be a topological space, and let be a point of : the map
is a valuation in the domain theory/measure theory, sense called Dirac valuation. This concept bears its origin from distribution theory as it is an obvious transposition to valuation theory of Dirac distribution: as seen above, Dirac valuations are the "bricks" simple valuations are made of.
In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.
In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.
Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.
In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.
In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.
In mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function. It is weaker than uniform convergence, to which it is often compared.
In mathematics, the notion of a germ of an object in/on a topological space is an equivalence class of that object and others of the same kind that captures their shared local properties. In particular, the objects in question are mostly functions and subsets. In specific implementations of this idea, the functions or subsets in question will have some property, such as being analytic or smooth, but in general this is not needed ; it is however necessary that the space on/in which the object is defined is a topological space, in order that the word local has some meaning.
The theory of functions of several complex variables is the branch of mathematics dealing with complex-valued functions. The name of the field dealing with the properties of function of several complex variables is called several complex variables, that has become a common name for that whole field of study and Mathematics Subject Classification has, as a top-level heading. A function is n-tuples of complex numbers, classically studied on the complex coordinate space .
In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.
In mathematics, a Radon measure, named after Johann Radon, is a measure on the σ-algebra of Borel sets of a Hausdorff topological space X that is finite on all compact sets, outer regular on all Borel sets, and inner regular on open sets. These conditions guarantee that the measure is "compatible" with the topology of the space, and most measures used in mathematical analysis and in number theory are indeed Radon measures.
In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of n complex dimensions. They were introduced by and named after Karl Stein (1951). A Stein space is similar to a Stein manifold but is allowed to have singularities. Stein spaces are the analogues of affine varieties or affine schemes in algebraic geometry.
In topology and related branches of mathematics, total-boundedness is a generalization of compactness for circumstances in which a set is not necessarily closed. A totally bounded set can be covered by finitely many subsets of every fixed "size"
In topology and related areas of mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter for a point is the collection of all neighbourhoods of the point
In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.
In mathematics, in the field of functional analysis, a Minkowski functional or gauge function is a function that recovers a notion of distance on a linear space.
In functional analysis, a branch of mathematics, a selection theorem is a theorem that guarantees the existence of a single-valued selection function from a given multi-valued map. There are various selection theorems, and they are important in the theories of differential inclusions, optimal control, and mathematical economics.
In mathematics, a Berkovich space, introduced by Berkovich (1990), is a version of an analytic space over a non-Archimedean field, refining Tate's notion of a rigid analytic space.
In functional analysis and related areas of mathematics, a Smith space is a complete compactly generated locally convex topological vector space having a universal compact set, i.e. a compact set which absorbs every other compact set .
In geometry, a valuation is a finitely additive function on a collection of admissible subsets of a fixed set with values in an abelian semigroup. For example, the Lebesgue measure is a valuation on finite unions of convex bodies of Euclidean space Other examples of valuations on finite unions of convex bodies are the surface area, the mean width, and the Euler characteristic.
In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.