Differential graded algebra

Last updated

In mathematics, in particular in homological algebra, a differential graded algebra is a graded associative algebra with an added chain complex structure that respects the algebra structure.

Contents

Definition

A differential graded algebra (or DG-algebra for short) A is a graded algebra equipped with a map which has either degree 1 (cochain complex convention) or degree −1 (chain complex convention) that satisfies two conditions:

  1. .
    This says that d gives A the structure of a chain complex or cochain complex (accordingly as the differential reduces or raises degree).
  2. , where is the degree of homogeneous elements.
    This says that the differential d respects the graded Leibniz rule .

A more succinct way to state the same definition is to say that a DG-algebra is a monoid object in the monoidal category of chain complexes. A DG morphism between DG-algebras is a graded algebra homomorphism which respects the differential d.

A differential graded augmented algebra (also called a DGA-algebra, an augmented DG-algebra or simply a DGA) is a DG-algebra equipped with a DG morphism to the ground ring (the terminology is due to Henri Cartan). [1]

Warning: some sources use the term DGA for a DG-algebra.

Examples of DG-algebras

Tensor algebra

The tensor algebra is a DG-algebra with differential similar to that of the Koszul complex. For a vector space over a field there is a graded vector space defined as

where .

If is a basis for there is a differential on the tensor algebra defined component-wise

sending basis elements to

In particular we have and so

Koszul complex

One of the foundational examples of a differential graded algebra, widely used in commutative algebra and algebraic geometry, is the Koszul complex. This is because of its wide array of applications, including constructing flat resolutions of complete intersections, and from a derived perspective, they give the derived algebra representing a derived critical locus.

De-Rham algebra

Differential forms on a manifold, together with the exterior derivation and the exterior product form a DG-algebra. These have wide applications, including in derived deformation theory. [2] See also de Rham cohomology.

Singular cohomology

Other facts about DG-algebras

See also

Related Research Articles

In mathematics, a chain complex is an algebraic structure that consists of a sequence of abelian groups and a sequence of homomorphisms between consecutive groups such that the image of each homomorphism is included in the kernel of the next. Associated to a chain complex is its homology, which describes how the images are included in the kernels.

In mathematics, specifically in homology theory and algebraic topology, cohomology is a general term for a sequence of abelian groups, usually one associated with a topological space, often defined from a cochain complex. Cohomology can be viewed as a method of assigning richer algebraic invariants to a space than homology. Some versions of cohomology arise by dualizing the construction of homology. In other words, cochains are functions on the group of chains in homology theory.

In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space , that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.

In mathematics, the Ext functors are the derived functors of the Hom functor. Along with the Tor functor, Ext is one of the core concepts of homological algebra, in which ideas from algebraic topology are used to define invariants of algebraic structures. The cohomology of groups, Lie algebras, and associative algebras can all be defined in terms of Ext. The name comes from the fact that the first Ext group Ext1 classifies extensions of one module by another.

In mathematics, an affine Lie algebra is an infinite-dimensional Lie algebra that is constructed in a canonical fashion out of a finite-dimensional simple Lie algebra. Given an affine Lie algebra, one can also form the associated affine Kac-Moody algebra, as described below. From a purely mathematical point of view, affine Lie algebras are interesting because their representation theory, like representation theory of finite-dimensional semisimple Lie algebras, is much better understood than that of general Kac–Moody algebras. As observed by Victor Kac, the character formula for representations of affine Lie algebras implies certain combinatorial identities, the Macdonald identities.

In mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by Claude Chevalley and Samuel Eilenberg (1948) to coefficients in an arbitrary Lie module.

In algebraic topology, a Steenrod algebra was defined by Henri Cartan (1955) to be the algebra of stable cohomology operations for mod cohomology.

<span class="mw-page-title-main">Massey product</span>

In algebraic topology, the Massey product is a cohomology operation of higher order introduced in, which generalizes the cup product. The Massey product was created by William S. Massey, an American algebraic topologist.

In mathematics, the Adams spectral sequence is a spectral sequence introduced by J. Frank Adams (1958) which computes the stable homotopy groups of topological spaces. Like all spectral sequences, it is a computational tool; it relates homology theory to what is now called stable homotopy theory. It is a reformulation using homological algebra, and an extension, of a technique called 'killing homotopy groups' applied by the French school of Henri Cartan and Jean-Pierre Serre.

In mathematics, a graded Lie algebra is a Lie algebra endowed with a gradation which is compatible with the Lie bracket. In other words, a graded Lie algebra is a Lie algebra which is also a nonassociative graded algebra under the bracket operation. A choice of Cartan decomposition endows any semisimple Lie algebra with the structure of a graded Lie algebra. Any parabolic Lie algebra is also a graded Lie algebra.

In mathematics, Hochschild homology (and cohomology) is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).

In mathematics and specifically in topology, rational homotopy theory is a simplified version of homotopy theory for topological spaces, in which all torsion in the homotopy groups is ignored. It was founded by Dennis Sullivan (1977) and Daniel Quillen (1969). This simplification of homotopy theory makes certain calculations much easier.

In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaf cohomology is a technique for producing functions with specified properties. Many geometric questions can be formulated as questions about the existence of sections of line bundles or of more general coherent sheaves; such sections can be viewed as generalized functions. Cohomology provides computable tools for producing sections, or explaining why they do not exist. It also provides invariants to distinguish one algebraic variety from another.

In mathematics, and especially topology, a Poincaré complex is an abstraction of the singular chain complex of a closed, orientable manifold.

In mathematics, in particular abstract algebra and topology, a differential graded Lie algebra is a graded vector space with added Lie algebra and chain complex structures that are compatible. Such objects have applications in deformation theory and rational homotopy theory.

In algebraic geometry, a derived scheme is a pair consisting of a topological space X and a sheaf either of simplicial commutative rings or of commutative ring spectra on X such that (1) the pair is a scheme and (2) is a quasi-coherent -module. The notion gives a homotopy-theoretic generalization of a scheme.

In mathematics, the term "graded" has a number of meanings, mostly related:

In mathematics, an algebra such as has multiplication whose associativity is well-defined on the nose. This means for any real numbers we have

References

  1. Cartan, Henri (1954). "Sur les groupes d'Eilenberg-Mac Lane ". Proceedings of the National Academy of Sciences of the United States of America . 40 (6): 467–471. doi: 10.1073/pnas.40.6.467 . PMC   534072 . PMID   16589508.
  2. Manetti. "Differential graded Lie algebras and formal deformation theory" (PDF). Archived (PDF) from the original on 16 Jun 2013.
  3. Cartan, H. (1954–1955). "DGA-algèbres et DGA-modules". Séminaire Henri Cartan. 7 (1): 1–9.
  4. Cartan, H. (1954–1955). "DGA-modules (suite), notion de construction". Séminaire Henri Cartan. 7 (1): 1–11.