In algebraic geometry, a derived scheme is a homotopy-theoretic generalization of a scheme in which classical commutative rings are replaced with derived versions such as differential graded algebras, commutative simplicial rings, or commutative ring spectra.
From the functor of points point-of-view, a derived scheme is a sheaf X on the category of simplicial commutative rings which admits an open affine covering .
From the locally ringed space point-of-view, a derived scheme is a pair consisting of a topological space X and a sheaf either of simplicial commutative rings or of commutative ring spectra [1] on X such that (1) the pair is a scheme and (2) is a quasi-coherent -module.
A derived stack is a stacky generalization of a derived scheme.
Over a field of characteristic zero, the theory is closely related to that of a differential graded scheme. [2] By definition, a differential graded scheme is obtained by gluing affine differential graded schemes, with respect to étale topology. [3] It was introduced by Maxim Kontsevich [4] "as the first approach to derived algebraic geometry." [5] and was developed further by Mikhail Kapranov and Ionut Ciocan-Fontanine.
Just as affine algebraic geometry is equivalent (in categorical sense) to the theory of commutative rings (commonly called commutative algebra), affine derived algebraic geometry over characteristic zero is equivalent to the theory of commutative differential graded rings. One of the main example of derived schemes comes from the derived intersection of subschemes of a scheme, giving the Koszul complex. For example, let , then we can get a derived scheme
where
is the étale spectrum.[ citation needed ] Since we can construct a resolution
the derived ring , a derived tensor product, is the koszul complex . The truncation of this derived scheme to amplitude provides a classical model motivating derived algebraic geometry. Notice that if we have a projective scheme
where we can construct the derived scheme where
with amplitude
Let be a fixed differential graded algebra defined over a field of characteristic . Then a -differential graded algebra is called semi-free if the following conditions hold:
It turns out that every differential graded algebra admits a surjective quasi-isomorphism from a semi-free differential graded algebra, called a semi-free resolution. These are unique up to homotopy equivalence in a suitable model category. The (relative) cotangent complex of an -differential graded algebra can be constructed using a semi-free resolution : it is defined as
Many examples can be constructed by taking the algebra representing a variety over a field of characteristic 0, finding a presentation of as a quotient of a polynomial algebra and taking the Koszul complex associated to this presentation. The Koszul complex acts as a semi-free resolution of the differential graded algebra where is the graded algebra with the non-trivial graded piece in degree 0.
The cotangent complex of a hypersurface can easily be computed: since we have the dga representing the derived enhancement of , we can compute the cotangent complex as
where and is the usual universal derivation. If we take a complete intersection, then the koszul complex
is quasi-isomorphic to the complex
This implies we can construct the cotangent complex of the derived ring as the tensor product of the cotangent complex above for each .
Please note that the cotangent complex in the context of derived geometry differs from the cotangent complex of classical schemes. Namely, if there was a singularity in the hypersurface defined by then the cotangent complex would have infinite amplitude. These observations provide motivation for the hidden smoothness philosophy of derived geometry since we are now working with a complex of finite length.
Given a polynomial function then consider the (homotopy) pullback diagram
where the bottom arrow is the inclusion of a point at the origin. Then, the derived scheme has tangent complex at is given by the morphism
where the complex is of amplitude . Notice that the tangent space can be recovered using and the measures how far away is from being a smooth point.
Given a stack there is a nice description for the tangent complex:
If the morphism is not injective, the measures again how singular the space is. In addition, the Euler characteristic of this complex yields the correct (virtual) dimension of the quotient stack. In particular, if we look at the moduli stack of principal -bundles, then the tangent complex is just .
Derived schemes can be used for analyzing topological properties of affine varieties. For example, consider a smooth affine variety . If we take a regular function and consider the section of
Then, we can take the derived pullback diagram
where is the zero section, constructing a derived critical locus of the regular function .
Consider the affine variety
and the regular function given by . Then,
where we treat the last two coordinates as . The derived critical locus is then the derived scheme
Note that since the left term in the derived intersection is a complete intersection, we can compute a complex representing the derived ring as
where is the koszul complex.
Consider a smooth function where is smooth. The derived enhancement of , the derived critical locus, is given by the differential graded scheme where the underlying graded ring are the polyvector fields
and the differential is defined by contraction by .
For example, if
we have the complex
representing the derived enhancement of .
In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.
In mathematics, especially differential geometry, the cotangent bundle of a smooth manifold is the vector bundle of all the cotangent spaces at every point in the manifold. It may be described also as the dual bundle to the tangent bundle. This may be generalized to categories with more structure than smooth manifolds, such as complex manifolds, or algebraic varieties or schemes. In the smooth case, any Riemannian metric or symplectic form gives an isomorphism between the cotangent bundle and the tangent bundle, but they are not in general isomorphic in other categories.
In vector calculus, Green's theorem relates a line integral around a simple closed curve C to a double integral over the plane region D bounded by C. It is the two-dimensional special case of Stokes' theorem.
In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation that accepts a function and returns another function.
In differential geometry, the Lie derivative, named after Sophus Lie by Władysław Ślebodziński, evaluates the change of a tensor field, along the flow defined by another vector field. This change is coordinate invariant and therefore the Lie derivative is defined on any differentiable manifold.
In mathematics, the Hodge star operator or Hodge star is a linear map defined on the exterior algebra of a finite-dimensional oriented vector space endowed with a nondegenerate symmetric bilinear form. Applying the operator to an element of the algebra produces the Hodge dual of the element. This map was introduced by W. V. D. Hodge.
In mathematics, especially in algebraic geometry and the theory of complex manifolds, coherent sheaves are a class of sheaves closely linked to the geometric properties of the underlying space. The definition of coherent sheaves is made with reference to a sheaf of rings that codifies this geometric information.
In mathematics, Kähler differentials provide an adaptation of differential forms to arbitrary commutative rings or schemes. The notion was introduced by Erich Kähler in the 1930s. It was adopted as standard in commutative algebra and algebraic geometry somewhat later, once the need was felt to adapt methods from calculus and geometry over the complex numbers to contexts where such methods are not available.
In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions.
In mathematics, deformation theory is the study of infinitesimal conditions associated with varying a solution P of a problem to slightly different solutions Pε, where ε is a small number, or a vector of small quantities. The infinitesimal conditions are the result of applying the approach of differential calculus to solving a problem with constraints. The name is an analogy to non-rigid structures that deform slightly to accommodate external forces.
In abstract algebra and multilinear algebra, a multilinear form on a vector space over a field is a map
In mathematics, specifically algebraic topology, Čech cohomology is a cohomology theory based on the intersection properties of open covers of a topological space. It is named for the mathematician Eduard Čech.
In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics.
In mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.
In mathematics, Lie algebra cohomology is a cohomology theory for Lie algebras. It was first introduced in 1929 by Élie Cartan to study the topology of Lie groups and homogeneous spaces by relating cohomological methods of Georges de Rham to properties of the Lie algebra. It was later extended by Claude Chevalley and Samuel Eilenberg to coefficients in an arbitrary Lie module.
In mathematics, a D-module is a module over a ring D of differential operators. The major interest of such D-modules is as an approach to the theory of linear partial differential equations. Since around 1970, D-module theory has been built up, mainly as a response to the ideas of Mikio Sato on algebraic analysis, and expanding on the work of Sato and Joseph Bernstein on the Bernstein–Sato polynomial.
In mathematics, Hochschild homology (and cohomology) is a homology theory for associative algebras over rings. There is also a theory for Hochschild homology of certain functors. Hochschild cohomology was introduced by Gerhard Hochschild (1945) for algebras over a field, and extended to algebras over more general rings by Henri Cartan and Samuel Eilenberg (1956).
In mathematics, the cotangent complex is a common generalisation of the cotangent sheaf, normal bundle and virtual tangent bundle of a map of geometric spaces such as manifolds or schemes. If is a morphism of geometric or algebraic objects, the corresponding cotangent complex can be thought of as a universal "linearization" of it, which serves to control the deformation theory of . It is constructed as an object in a certain derived category of sheaves on using the methods of homotopical algebra.
In mathematics, the Kodaira–Spencer map, introduced by Kunihiko Kodaira and Donald C. Spencer, is a map associated to a deformation of a scheme or complex manifold X, taking a tangent space of a point of the deformation space to the first cohomology group of the sheaf of vector fields on X.
In mathematics, derived noncommutative algebraic geometry, the derived version of noncommutative algebraic geometry, is the geometric study of derived categories and related constructions of triangulated categories using categorical tools. Some basic examples include the bounded derived category of coherent sheaves on a smooth variety, , called its derived category, or the derived category of perfect complexes on an algebraic variety, denoted . For instance, the derived category of coherent sheaves on a smooth projective variety can be used as an invariant of the underlying variety for many cases. Unfortunately, studying derived categories as geometric objects of themselves does not have a standardized name.