Homological connectivity

Last updated

In algebraic topology, homological connectivity is a property describing a topological space based on its homology groups. [1]

Contents

Definitions

Background

X is homologically-connected if its 0-th homology group equals Z, i.e. , or equivalently, its 0-th reduced homology group is trivial: .

X is homologically 1-connected if it is homologically-connected, and additionally, its 1-th homology group is trivial, i.e. . [1]

In general, for any integer k, X is homologically k-connected if its reduced homology groups of order 0, 1, ..., k are all trivial. Note that the reduced homology group equals the homology group for 1,..., k (only the 0-th reduced homology group is different).

Connectivity

The homological connectivity of X, denoted connH(X), is the largest k ≥ 0 for which X is homologically k-connected. Examples:

Some computations become simpler if the connectivity is defined with an offset of 2, that is, . [2] The eta of the empty space is 0, which is its smallest possible value. The eta of any disconnected space is 1.

Dependence on the field of coefficients

The basic definition considers homology groups with integer coefficients. Considering homology groups with other coefficients leads to other definitions of connectivity. For example, X is F2-homologically 1-connected if its 1st homology group with coefficients from F2 (the cyclic field of size 2) is trivial, i.e.: .

Homological connectivity in specific spaces

For homological connectivity of simplicial complexes, see simplicial homology. Homological connectivity was calculated for various spaces, including:

Relation with homotopical connectivity

Hurewicz theorem relates the homological connectivity to the homotopical connectivity, denoted by .

For any X that is simply-connected, that is, , the connectivities are the same:If X is not simply-connected (), then inequality holds:but it may be strict. See Homotopical connectivity.

See also

Meshulam's game is a game played on a graph G, that can be used to calculate a lower bound on the homological connectivity of the independence complex of G.

Related Research Articles

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

In mathematics, the term homology, originally introduced in algebraic topology, has three primary, closely-related usages. The most direct usage of the term is to take the homology of a chain complex, resulting in a sequence of abelian groups called homology groups. This operation, in turn, allows one to associate various named homologies or homology theories to various other types of mathematical objects. Lastly, since there are many homology theories for topological spaces that produce the same answer, one also often speaks of the homology of a topological space. There is also a related notion of the cohomology of a cochain complex, giving rise to various cohomology theories, in addition to the notion of the cohomology of a topological space.

In mathematics, group cohomology is a set of mathematical tools used to study groups using cohomology theory, a technique from algebraic topology. Analogous to group representations, group cohomology looks at the group actions of a group G in an associated G-moduleM to elucidate the properties of the group. By treating the G-module as a kind of topological space with elements of representing n-simplices, topological properties of the space may be computed, such as the set of cohomology groups . The cohomology groups in turn provide insight into the structure of the group G and G-module M themselves. Group cohomology plays a role in the investigation of fixed points of a group action in a module or space and the quotient module or space with respect to a group action. Group cohomology is used in the fields of abstract algebra, homological algebra, algebraic topology and algebraic number theory, as well as in applications to group theory proper. As in algebraic topology, there is a dual theory called group homology. The techniques of group cohomology can also be extended to the case that instead of a G-module, G acts on a nonabelian G-group; in effect, a generalization of a module to non-Abelian coefficients.

<span class="mw-page-title-main">Covering space</span> Type of continuous map in topology

In topology, a covering or covering projection is a map between topological spaces that, intuitively, locally acts like a projection of multiple copies of a space onto itself. In particular, coverings are special types of local homeomorphisms. If is a covering, is said to be a covering space or cover of , and is said to be the base of the covering, or simply the base. By abuse of terminology, and may sometimes be called covering spaces as well. Since coverings are local homeomorphisms, a covering space is a special kind of étale space.

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

In algebraic topology, the Betti numbers are used to distinguish topological spaces based on the connectivity of n-dimensional simplicial complexes. For the most reasonable finite-dimensional spaces, the sequence of Betti numbers is 0 from some point onward, and they are all finite.

In mathematics, and specifically in topology, a CW complex is a topological space that is built by gluing together topological balls of different dimensions in specific ways. It generalizes both manifolds and simplicial complexes and has particular significance for algebraic topology. It was initially introduced by J. H. C. Whitehead to meet the needs of homotopy theory. CW complexes have better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation.

In mathematics, the Hurewicz theorem is a basic result of algebraic topology, connecting homotopy theory with homology theory via a map known as the Hurewicz homomorphism. The theorem is named after Witold Hurewicz, and generalizes earlier results of Henri Poincaré.

In algebraic topology, a branch of mathematics, a spectrum is an object representing a generalized cohomology theory. Every such cohomology theory is representable, as follows from Brown's representability theorem. This means that, given a cohomology theory

,

In algebraic topology, simplicial homology is the sequence of homology groups of a simplicial complex. It formalizes the idea of the number of holes of a given dimension in the complex. This generalizes the number of connected components.

In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.

In mathematics, the Serre spectral sequence is an important tool in algebraic topology. It expresses, in the language of homological algebra, the singular (co)homology of the total space X of a (Serre) fibration in terms of the (co)homology of the base space B and the fiber F. The result is due to Jean-Pierre Serre in his doctoral dissertation.

In mathematics, a local system on a topological space X is a tool from algebraic topology which interpolates between cohomology with coefficients in a fixed abelian group A, and general sheaf cohomology in which coefficients vary from point to point. Local coefficient systems were introduced by Norman Steenrod in 1943.

In algebraic topology, homotopical connectivity is a property describing a topological space based on the dimension of its holes. In general, low homotopical connectivity indicates that the space has at least one low-dimensional hole. The concept of n-connectedness generalizes the concepts of path-connectedness and simple connectedness.

In homotopy theory, a branch of algebraic topology, a Postnikov system is a way of decomposing a topological space's homotopy groups using an inverse system of topological spaces whose homotopy type at degree agrees with the truncated homotopy type of the original space . Postnikov systems were introduced by, and are named after, Mikhail Postnikov.

In mathematics, an n-group, or n-dimensional higher group, is a special kind of n-category that generalises the concept of group to higher-dimensional algebra. Here, may be any natural number or infinity. The thesis of Alexander Grothendieck's student Hoàng Xuân Sính was an in-depth study of 2-groups under the moniker 'gr-category'.

In homotopy theory, a branch of mathematics, the Barratt–Priddy theorem expresses a connection between the homology of the symmetric groups and mapping spaces of spheres. The theorem is also often stated as a relation between the sphere spectrum and the classifying spaces of the symmetric groups via Quillen's plus construction.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In algebraic topology and graph theory, graph homology describes the homology groups of a graph, where the graph is considered as a topological space. It formalizes the idea of the number of "holes" in the graph. It is a special case of a simplicial homology, as a graph is a special case of a simplicial complex. Since a finite graph is a 1-complex, the only non-trivial homology groups are the 0-th group and the 1-th group.

In mathematics, an Abelian 2-group is a higher dimensional analogue of an Abelian group, in the sense of higher algebra, which were originally introduced by Alexander Grothendieck while studying abstract structures surrounding Abelian varieties and Picard groups. More concretely, they are given by groupoids which have a bifunctor which acts formally like the addition an Abelian group. Namely, the bifunctor has a notion of commutativity, associativity, and an identity structure. Although this seems like a rather lofty and abstract structure, there are several examples of Abelian 2-groups. In fact, some of which provide prototypes for more complex examples of higher algebraic structures, such as Abelian n-groups.

References

  1. 1 2 3 Linial*, Nathan; Meshulam*, Roy (2006-08-01). "Homological Connectivity Of Random 2-Complexes". Combinatorica. 26 (4): 475–487. doi:10.1007/s00493-006-0027-9. ISSN   1439-6912. S2CID   10826092.
  2. Aharoni, Ron; Berger, Eli; Kotlar, Dani; Ziv, Ran (2017-10-01). "On a conjecture of Stein". Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg. 87 (2): 203–211. doi:10.1007/s12188-016-0160-3. ISSN   1865-8784. S2CID   119139740.
  3. Meshulam, Roy (2003-05-01). "Domination numbers and homology". Journal of Combinatorial Theory, Series A. 102 (2): 321–330. doi: 10.1016/s0097-3165(03)00045-1 . ISSN   0097-3165.
  4. Adamaszek, Michał; Barmak, Jonathan Ariel (2011-11-06). "On a lower bound for the connectivity of the independence complex of a graph". Discrete Mathematics. 311 (21): 2566–2569. doi: 10.1016/j.disc.2011.06.010 . ISSN   0012-365X.
  5. Meshulam, R.; Wallach, N. (2009). "Homological connectivity of random k-dimensional complexes". Random Structures & Algorithms. 34 (3): 408–417. arXiv: math/0609773 . doi:10.1002/rsa.20238. ISSN   1098-2418. S2CID   8065082.
  6. Cooley, Oliver; Haxell, Penny; Kang, Mihyun; Sprüssel, Philipp (2016-04-04). "Homological connectivity of random hypergraphs". arXiv: 1604.00842 [math.CO].
  7. Bobrowski, Omer (2019-06-12). "Homological Connectivity in Random Čech Complexes". arXiv: 1906.04861 [math.PR].