Homotopical connectivity

Last updated

In algebraic topology, homotopical connectivity is a property describing a topological space based on the dimension of its holes. In general, low homotopical connectivity indicates that the space has at least one low-dimensional hole. The concept of n-connectedness generalizes the concepts of path-connectedness and simple connectedness.

Contents

An equivalent definition of homotopical connectivity is based on the homotopy groups of the space. A space is n-connected (or n-simple connected) if its first n homotopy groups are trivial.

Homotopical connectivity is defined for maps, too. A map is n-connected if it is an isomorphism "up to dimension n, in homotopy".

Definition using holes

All definitions below consider a topological space X.

A hole in X is, informally, a thing that prevents some suitably-placed sphere from continuously shrinking to a point. [1] :78 Equivalently, it is a sphere that cannot be continuously extended to a ball. Formally,

Examples

A 2-dimensional hole (a hole with a 1-dimensional boundary). Hole with 1-dimensional boundary.png
A 2-dimensional hole (a hole with a 1-dimensional boundary).
A 1-dimensional hole. Hole with a 0-dimensional boundary.png
A 1-dimensional hole.

Homotopical connectivity of spheres

In general, for every integer d, (and ) [1] :79,Thm.4.3.2 The proof requires two directions:

Definition using groups

A space X is called n-connected, for n ≥ 0, if it is non-empty, and all its homotopy groups of order dn are the trivial group:

where denotes the i-th homotopy group and 0 denotes the trivial group. [3] The two definitions are equivalent. The requirement for an n-connected space consists of requirements for all dn:

The requirements of being non-empty and path-connected can be interpreted as (−1)-connected and 0-connected, respectively, which is useful in defining 0-connected and 1-connected maps, as below. The 0th homotopy set can be defined as:

This is only a pointed set, not a group, unless X is itself a topological group; the distinguished point is the class of the trivial map, sending S0 to the base point of X. Using this set, a space is 0-connected if and only if the 0th homotopy set is the one-point set. The definition of homotopy groups and this homotopy set require that X be pointed (have a chosen base point), which cannot be done if X is empty.

A topological space X is path-connected if and only if its 0th homotopy group vanishes identically, as path-connectedness implies that any two points x1 and x2 in X can be connected with a continuous path which starts in x1 and ends in x2, which is equivalent to the assertion that every mapping from S0 (a discrete set of two points) to X can be deformed continuously to a constant map. With this definition, we can define X to be n-connected if and only if

Examples

n-connected map

The corresponding relative notion to the absolute notion of an n-connected space is an n-connected map, which is defined as a map whose homotopy fiber Ff is an (n  1)-connected space. In terms of homotopy groups, it means that a map is n-connected if and only if:

The last condition is frequently confusing; it is because the vanishing of the (n  1)-st homotopy group of the homotopy fiber Ff corresponds to a surjection on the nth homotopy groups, in the exact sequence:

If the group on the right vanishes, then the map on the left is a surjection.

Low-dimensional examples:

n-connectivity for spaces can in turn be defined in terms of n-connectivity of maps: a space X with basepoint x0 is an n-connected space if and only if the inclusion of the basepoint is an n-connected map. The single point set is contractible, so all its homotopy groups vanish, and thus "isomorphism below n and onto at n" corresponds to the first n homotopy groups of X vanishing.

Interpretation

This is instructive for a subset: an n-connected inclusion is one such that, up to dimension n  1, homotopies in the larger space X can be homotoped into homotopies in the subset A.

For example, for an inclusion map to be 1-connected, it must be:

One-to-one on means that if there is a path connecting two points by passing through X, there is a path in A connecting them, while onto means that in fact a path in X is homotopic to a path in A.

In other words, a function which is an isomorphism on only implies that any elements of that are homotopic in X are abstractly homotopic in A – the homotopy in A may be unrelated to the homotopy in X – while being n-connected (so also onto ) means that (up to dimension n  1) homotopies in X can be pushed into homotopies in A.

This gives a more concrete explanation for the utility of the definition of n-connectedness: for example, a space where the inclusion of the k-skeleton is n-connected (for n > k) – such as the inclusion of a point in the n-sphere – has the property that any cells in dimensions between k and n do not affect the lower-dimensional homotopy types.

Lower bounds

Many topological proofs require lower bounds on the homotopical connectivity. There are several "recipes" for proving such lower bounds.

Homology

Hurewicz theorem relates the homotopical connectivity to the homological connectivity , denoted by . This is useful for computing homotopical connectivity, since the homological groups can be computed more easily.


Suppose first that X is simply-connected, that is, . Let ; so for all , and . Hurewicz theorem [5] :366,Thm.4.32 says that, in this case, for all , and is isomorphic to , so too. Therefore:

If X is not simply-connected (), then

still holds. When this is trivial. When (so X is path-connected but not simply-connected), one should prove that .[ clarification needed ]

The inequality may be strict: there are spaces in which but . [6]

By definition, the k-th homology group of a simplicial complex depends only on the simplices of dimension at most k+1 (see simplicial homology). Therefore, the above theorem implies that a simplicial complex K is k-connected if and only if its (k+1)-dimensional skeleton (the subset of K containing only simplices of dimension at most k+1) is k-connected.: [1] :80,Prop.4.4.2

Join

Let K and L be non-empty cell complexes. Their join is commonly denoted by . Then: [1] :81,Prop.4.4.3

The identity is simpler with the eta notation:

As an example, let a set of two disconnected points. There is a 1-dimensional hole between the points, so the eta is 1. The join is a square, which is homeomorphic to a circle, so its eta is 2. The join of this square with a third copy of K is a octahedron, which is homeomorphic to , and its eta is 3. In general, the join of n copies of is homeomorphic to and its eta is n.

The general proof is based on a similar formula for the homological connectivity.

Nerve

Let K1,...,Kn be abstract simplicial complexes, and denote their union by K.

Denote the nerve complex of {K1, ... , Kn} (the abstract complex recording the intersection pattern of the Ki) by N.

If, for each nonempty , the intersection is either empty or (k−|J|+1)-connected, then for every jk, the j-th homotopy group of N is isomorphic to the j-th homotopy group of K.

In particular, N is k-connected if-and-only-if K is k-connected. [7] :Thm.6

Homotopy principle

In geometric topology, cases when the inclusion of a geometrically-defined space, such as the space of immersions into a more general topological space, such as the space of all continuous maps between two associated spaces are n-connected are said to satisfy a homotopy principle or "h-principle". There are a number of powerful general techniques for proving h-principles.

See also

Related Research Articles

In the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent have isomorphic fundamental groups. The fundamental group of a topological space is denoted by .

<span class="mw-page-title-main">3-sphere</span> Mathematical object

In mathematics, a 3-sphere is a higher-dimensional analogue of a sphere. It may be embedded in 4-dimensional Euclidean space as the set of points equidistant from a fixed central point. Analogous to how the boundary of a ball in three dimensions is an ordinary sphere, the boundary of a ball in four dimensions is a 3-sphere. A 3-sphere is an example of a 3-manifold and an n-sphere.

In category theory, a branch of mathematics, a natural transformation provides a way of transforming one functor into another while respecting the internal structure of the categories involved. Hence, a natural transformation can be considered to be a "morphism of functors". Informally, the notion of a natural transformation states that a particular map between functors can be done consistently over an entire category.

<span class="mw-page-title-main">Torus</span> Doughnut-shaped surface of revolution

In geometry, a torus is a surface of revolution generated by revolving a circle in three-dimensional space about an axis that is coplanar with the circle.

<span class="mw-page-title-main">Homotopy</span> Continuous deformation between two continuous functions

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic if one can be "continuously deformed" into the other, such a deformation being called a homotopy between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.

In mathematics, homotopy groups are used in algebraic topology to classify topological spaces. The first and simplest homotopy group is the fundamental group, denoted which records information about loops in a space. Intuitively, homotopy groups record information about the basic shape, or holes, of a topological space.

A CW complex is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better categorical properties than simplicial complexes, but still retains a combinatorial nature that allows for computation. The C stands for "closure-finite", and the W for "weak" topology.

In mathematics, the Hurewicz theorem is a basic result of algebraic topology, connecting homotopy theory with homology theory via a map known as the Hurewicz homomorphism. The theorem is named after Witold Hurewicz, and generalizes earlier results of Henri Poincaré.

In mathematics, particularly algebraic topology, cohomotopy sets are particular contravariant functors from the category of pointed topological spaces and basepoint-preserving continuous maps to the category of sets and functions. They are dual to the homotopy groups, but less studied.

In mathematics, specifically algebraic topology, an Eilenberg–MacLane space is a topological space with a single nontrivial homotopy group.

<span class="mw-page-title-main">Homotopy groups of spheres</span> How spheres of various dimensions can wrap around each other

In the mathematical field of algebraic topology, the homotopy groups of spheres describe how spheres of various dimensions can wrap around each other. They are examples of topological invariants, which reflect, in algebraic terms, the structure of spheres viewed as topological spaces, forgetting about their precise geometry. Unlike homology groups, which are also topological invariants, the homotopy groups are surprisingly complex and difficult to compute.

In mathematics, stable homotopy theory is the part of homotopy theory concerned with all structure and phenomena that remain after sufficiently many applications of the suspension functor. A founding result was the Freudenthal suspension theorem, which states that given any pointed space , the homotopy groups stabilize for sufficiently large. In particular, the homotopy groups of spheres stabilize for . For example,

<span class="mw-page-title-main">Join (topology)</span>

In topology, a field of mathematics, the join of two topological spaces and , often denoted by or , is a topological space formed by taking the disjoint union of the two spaces, and attaching line segments joining every point in to every point in .

In mathematics, the Whitehead product is a graded quasi-Lie algebra structure on the homotopy groups of a space. It was defined by J. H. C. Whitehead in.

In mathematics, in particular in algebraic topology, the Hopf invariant is a homotopy invariant of certain maps between n-spheres.

In the mathematical field of topology, a regular homotopy refers to a special kind of homotopy between immersions of one manifold in another. The homotopy must be a 1-parameter family of immersions.

In homotopy theory, a branch of algebraic topology, a Postnikov system is a way of decomposing a topological space's homotopy groups using an inverse system of topological spaces whose homotopy type at degree agrees with the truncated homotopy type of the original space . Postnikov systems were introduced by, and are named after, Mikhail Postnikov.

In algebraic topology, the cellular approximation theorem states that a map between CW-complexes can always be taken to be of a specific type. Concretely, if X and Y are CW-complexes, and f : XY is a continuous map, then f is said to be cellular, if f takes the n-skeleton of X to the n-skeleton of Y for all n, i.e. if for all n. The content of the cellular approximation theorem is then that any continuous map f : XY between CW-complexes X and Y is homotopic to a cellular map, and if f is already cellular on a subcomplex A of X, then we can furthermore choose the homotopy to be stationary on A. From an algebraic topological viewpoint, any map between CW-complexes can thus be taken to be cellular.

This is a glossary of properties and concepts in algebraic topology in mathematics.

In algebraic topology, homological connectivity is a property describing a topological space based on its homology groups.

References

  1. 1 2 3 4 5 6 Matoušek, Jiří (2007). Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry (2nd ed.). Berlin-Heidelberg: Springer-Verlag. ISBN   978-3-540-00362-5. Written in cooperation with Anders Björner and Günter M. Ziegler , Section 4.3
  2. Aharoni, Ron; Berger, Eli (2006). "The intersection of a matroid and a simplicial complex". Transactions of the American Mathematical Society. 358 (11): 4895–4917. doi:10.1090/S0002-9947-06-03833-5. ISSN   0002-9947.
  3. "n-connected space in nLab". ncatlab.org. Retrieved 2017-09-18.
  4. Frick, Florian; Soberón, Pablo (2020-05-11). "The topological Tverberg problem beyond prime powers". arXiv: 2005.05251 [math.CO].
  5. Hatcher, Allen (2001), Algebraic Topology, Cambridge University Press, ISBN   978-0-521-79160-1
  6. See example 2.38 in Hatcher's book. See also this answer.
  7. Björner, Anders (2003-04-01). "Nerves, fibers and homotopy groups". Journal of Combinatorial Theory . Series A. 102 (1): 88–93. doi: 10.1016/S0097-3165(03)00015-3 . ISSN   0097-3165.