Hemicontinuity

Last updated

In mathematics, the notion of the continuity of functions is not immediately extensible to set-valued functions between two sets A and B. The dual concepts of upper hemicontinuity and lower hemicontinuity facilitate such an extension. A set-valued function that has both properties is said to be continuous in an analogy to the property of the same name for single-valued functions.

Contents

To explain both notions, consider a sequence a of points in a domain, and a sequence b of points in the range. We say that b corresponds to a if each point in b is contained in the image of the corresponding point in a.

Examples

This set-valued function is upper hemicontinuous everywhere, but not lower hemicontinuous at
x
{\displaystyle x}
: for a sequence of points
(
x
m
)
{\displaystyle \left(x_{m}\right)}
that converges to
x
,
{\displaystyle x,}
we have a
y
{\displaystyle y}
(
y
[?]
f
(
x
)
{\displaystyle y\in f(x)}
) such that no sequence of
(
y
m
)
{\displaystyle \left(y_{m}\right)}
converges to
y
{\displaystyle y}
where each
y
m
{\displaystyle y_{m}}
is in
f
(
x
m
)
.
{\displaystyle f\left(x_{m}\right).} Upper hemicontinuous.svg
This set-valued function is upper hemicontinuous everywhere, but not lower hemicontinuous at  : for a sequence of points that converges to we have a () such that no sequence of converges to where each is in
This set-valued function is lower hemicontinuous everywhere, but not upper hemicontinuous at
x
,
{\displaystyle x,}
because the graph (set) is not closed. Lower hemicontinuous.svg
This set-valued function is lower hemicontinuous everywhere, but not upper hemicontinuous at because the graph (set) is not closed.

The image on the right shows a function that is not lower hemicontinuous at x. To see this, let a be a sequence that converges to x from the left. The image of x is a vertical line that contains some point (x,y). But every sequence b that corresponds to a is contained in the bottom horizontal line, so it cannot converge to y. In contrast, the function is upper hemicontinuous everywhere. For example, considering any sequence a that converges to x from the left or from the right, and any corresponding sequence b, the limit of b is contained in the vertical line that is the image of the limit of a.

The image on the left shows a function that is not upper hemicontinuous at x. To see this, let a be a sequence that converges to x from the right. The image of a contains vertical lines, so there exists a corresponding sequence b in which all elements are bounded away from f(x). The image of the limit of a contains a single point f(x), so it does not contain the limit of b. In contrast, that function is lower hemicontinuous everywhere. For example, for any sequence a that converges to x, from the left or from the right, f(x) contains a single point, and there exists a corresponding sequence b that converges to f(x).

Formal definition: upper hemicontinuity

A set-valued function is said to be upper hemicontinuous at the point if, for any open with , there exists a neighbourhood of such that for all is a subset of

Sequential characterization

For a set-valued function with closed values, if is upper hemicontinuous at then for all sequences in and all sequences such that

if and then

As an example, look at the image at the right, and consider sequence a in the domain that converges to x (either from the left or from the right). Then, any sequence b that satisfies the requirements converges to some point in f(x). Therefore, the

If B is compact, the converse is also true.

Closed graph theorem

The graph of a set-valued function is the set defined by

If is an upper hemicontinuous set-valued function with closed domain (that is, the set of points where is not the empty set is closed) and closed values (i.e. is closed for all ), then is closed. If is compact, then the converse is also true. [1]

Formal definition: lower hemicontinuity

A set-valued function is said to be lower hemicontinuous at the point if for any open set intersecting there exists a neighbourhood of such that intersects for all (Here intersects means nonempty intersection ).

Sequential characterization

is lower hemicontinuous at if and only if for every sequence in such that in and all there exists a subsequence of and also a sequence such that and for every

Open graph theorem

A set-valued function have open lower sections if the set is open in for every If values are all open sets in then is said to have open upper sections.

If has an open graph then has open upper and lower sections and if has open lower sections then it is lower hemicontinuous. [2]

The open graph theorem says that if is a set-valued function with convex values and open upper sections, then has an open graph in if and only if is lower hemicontinuous. [2]

Properties

Set-theoretic, algebraic and topological operations on set-valued functions (like union, composition, sum, convex hull, closure) usually preserve the type of continuity. But this should be taken with appropriate care since, for example, there exists a pair of lower hemicontinuous set-valued functions whose intersection is not lower hemicontinuous. This can be fixed upon strengthening continuity properties: if one of those lower hemicontinuous multifunctions has open graph then their intersection is again lower hemicontinuous.

Crucial to set-valued analysis (in view of applications) are the investigation of single-valued selections and approximations to set-valued functions. Typically lower hemicontinuous set-valued functions admit single-valued selections (Michael selection theorem, Bressan–Colombo directionally continuous selection theorem, Fryszkowski decomposable map selection). Likewise, upper hemicontinuous maps admit approximations (e.g. Ancel–Granas–Górniewicz–Kryszewski theorem).

Implications for continuity

If a set-valued function is both upper hemicontinuous and lower hemicontinuous, it is said to be continuous. A continuous function is in all cases both upper and lower hemicontinuous.

Other concepts of continuity

The upper and lower hemicontinuity might be viewed as usual continuity:

is lower [resp. upper] hemicontinuous if and only if the mapping is continuous where the hyperspace P(B) has been endowed with the lower [resp. upper] Vietoris topology.

(For the notion of hyperspace compare also power set and function space).

Using lower and upper Hausdorff uniformity we can also define the so-called upper and lower semicontinuous maps in the sense of Hausdorff (also known as metrically lower / upper semicontinuous maps).

See also

Notes

  1. Proposition 1.4.8 of Aubin, Jean-Pierre; Frankowska, Hélène (1990). Set-Valued Analysis. Basel: Birkhäuser. ISBN   3-7643-3478-9.
  2. 1 2 Zhou, J.X. (August 1995). "On the Existence of Equilibrium for Abstract Economies". Journal of Mathematical Analysis and Applications. 193 (3): 839–858. doi: 10.1006/jmaa.1995.1271 .

Related Research Articles

In mathematics, a continuous function is a function such that a continuous variation of the argument induces a continuous variation of the value of the function. This means there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is not continuous. Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.

<span class="mw-page-title-main">Cauchy distribution</span> Probability distribution

The Cauchy distribution, named after Augustin Cauchy, is a continuous probability distribution. It is also known, especially among physicists, as the Lorentz distribution, Cauchy–Lorentz distribution, Lorentz(ian) function, or Breit–Wigner distribution. The Cauchy distribution is the distribution of the x-intercept of a ray issuing from with a uniformly distributed angle. It is also the distribution of the ratio of two independent normally distributed random variables with mean zero.

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

In mathematics, a series is, roughly speaking, the operation of adding infinitely many quantities, one after the other, to a given starting quantity. The study of series is a major part of calculus and its generalization, mathematical analysis. Series are used in most areas of mathematics, even for studying finite structures through generating functions. In addition to their ubiquity in mathematics, infinite series are also widely used in other quantitative disciplines such as physics, computer science, statistics and finance.

<span class="mw-page-title-main">Limit inferior and limit superior</span> Bounds of a sequence

In mathematics, the limit inferior and limit superior of a sequence can be thought of as limiting bounds on the sequence. They can be thought of in a similar fashion for a function. For a set, they are the infimum and supremum of the set's limit points, respectively. In general, when there are multiple objects around which a sequence, function, or set accumulates, the inferior and superior limits extract the smallest and largest of them; the type of object and the measure of size is context-dependent, but the notion of extreme limits is invariant. Limit inferior is also called infimum limit, limit infimum, liminf, inferior limit, lower limit, or inner limit; limit superior is also known as supremum limit, limit supremum, limsup, superior limit, upper limit, or outer limit.

<span class="mw-page-title-main">Semi-continuity</span> Property of functions which is weaker than continuity

In mathematical analysis, semicontinuity is a property of extended real-valued functions that is weaker than continuity. An extended real-valued function is uppersemicontinuous at a point if, roughly speaking, the function values for arguments near are not much higher than

In complex analysis, a branch of mathematics, analytic continuation is a technique to extend the domain of definition of a given analytic function. Analytic continuation often succeeds in defining further values of a function, for example in a new region where the infinite series representation which initially defined the function becomes divergent.

<span class="mw-page-title-main">Euler's constant</span> Relates logarithm and harmonic series

Euler's constant is a mathematical constant, usually denoted by the lowercase Greek letter gamma, defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces. All Banach and Hilbert spaces are Fréchet spaces. Spaces of infinitely differentiable functions are typical examples of Fréchet spaces, many of which are typically not Banach spaces.

<span class="mw-page-title-main">Digamma function</span> Mathematical function

In mathematics, the digamma function is defined as the logarithmic derivative of the gamma function:

<span class="mw-page-title-main">Incomplete gamma function</span> Types of special mathematical functions

In mathematics, the upper and lower incomplete gamma functions are types of special functions which arise as solutions to various mathematical problems such as certain integrals.

<span class="mw-page-title-main">Exponential integral</span> Special function defined by an integral

In mathematics, the exponential integral Ei is a special function on the complex plane.

In mathematics, infinite-dimensional holomorphy is a branch of functional analysis. It is concerned with generalizations of the concept of holomorphic function to functions defined and taking values in complex Banach spaces, typically of infinite dimension. It is one aspect of nonlinear functional analysis.

In the field of mathematical analysis for the calculus of variations, Γ-convergence (Gamma-convergence) is a notion of convergence for functionals. It was introduced by Ennio de Giorgi.

In mathematical analysis, a Young measure is a parameterized measure that is associated with certain subsequences of a given bounded sequence of measurable functions. They are a quantification of the oscillation effect of the sequence in the limit. Young measures have applications in the calculus of variations, especially models from material science, and the study of nonlinear partial differential equations, as well as in various optimization. They are named after Laurence Chisholm Young who invented them, already in 1937 in one dimension (curves) and later in higher dimensions in 1942.

In mathematics, Kuratowski convergence or Painlevé-Kuratowski convergence is a notion of convergence for subsets of a topological space. First introduced by Paul Painlevé in lectures on mathematical analysis in 1902, the concept was popularized in texts by Felix Hausdorff and Kazimierz Kuratowski. Intuitively, the Kuratowski limit of a sequence of sets is where the sets "accumulate".

In statistics, the Fisher–Tippett–Gnedenko theorem is a general result in extreme value theory regarding asymptotic distribution of extreme order statistics. The maximum of a sample of iid random variables after proper renormalization can only converge in distribution to one of only 3 possible distribution families: the Gumbel distribution, the Fréchet distribution, or the Weibull distribution. Credit for the extreme value theorem and its convergence details are given to Fréchet (1927), Fisher and Tippett (1928), Mises (1936), and Gnedenko (1943).

Uncertainty theory is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms.

In mathematics, a limit is the value that a function approaches as the input approaches some value. Limits are essential to calculus and mathematical analysis, and are used to define continuity, derivatives, and integrals.

In mathematics, particularly in functional analysis and topology, the closed graph theorem is a result connecting the continuity of certain kinds of functions to a topological property of their graph. In its most elementary form, the closed graph theorem states that a linear function between two Banach spaces is continuous if and only if the graph of that function is closed.

References