Selection theorem

Last updated

In functional analysis, a branch of mathematics, a selection theorem is a theorem that guarantees the existence of a single-valued selection function from a given set-valued map. There are various selection theorems, and they are important in the theories of differential inclusions, optimal control, and mathematical economics. [1]

Contents

Preliminaries

Given two sets X and Y, let F be a set-valued function from X and Y. Equivalently, is a function from X to the power set of Y.

A function is said to be a selection of F if

In other words, given an input x for which the original function F returns multiple values, the new function f returns a single value. This is a special case of a choice function.

The axiom of choice implies that a selection function always exists; however, it is often important that the selection have some "nice" properties, such as continuity or measurability. This is where the selection theorems come into action: they guarantee that, if F satisfies certain properties, then it has a selection f that is continuous or has other desirable properties.

Selection theorems for set-valued functions

The Michael selection theorem [2] says that the following conditions are sufficient for the existence of a continuous selection:

The approximate selection theorem [3] states the following:

Suppose X is a compact metric space, Y a non-empty compact, convex subset of a normed vector space, and Φ: X → a multifunction all of whose values are compact and convex. If graph(Φ) is closed, then for every ε > 0 there exists a continuous function f : XY with graph(f) ⊂ [graph(Φ)]ε.

Here, denotes the -dilation of , that is, the union of radius- open balls centered on points in . The theorem implies the existence of a continuous approximate selection.

Another set of sufficient conditions for the existence of a continuous approximate selection is given by the Deutsch–Kenderov theorem, [4] whose conditions are more general than those of Michael's theorem (and thus the selection is only approximate):

In a later note, Xu proved that the Deutsch–Kenderov theorem is also valid if is a locally convex topological vector space. [5]

The Yannelis-Prabhakar selection theorem [6] says that the following conditions are sufficient for the existence of a continuous selection:

The Kuratowski and Ryll-Nardzewski measurable selection theorem says that if X is a Polish space and its Borel σ-algebra, is the set of nonempty closed subsets of X, is a measurable space, and is an -weakly measurable map (that is, for every open subset we have ), then has a selection that is -measurable. [7]

Other selection theorems for set-valued functions include:

Selection theorems for set-valued sequences

Related Research Articles

In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to sufficiently small changes of its argument. A discontinuous function is a function that is not continuous. Until the 19th century, mathematicians largely relied on intuitive notions of continuity and considered only continuous functions. The epsilon–delta definition of a limit was introduced to formalize the definition of continuity.

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz.

In the area of mathematics known as functional analysis, a reflexive space is a locally convex topological vector space for which the canonical evaluation map from into its bidual is a homeomorphism. A normed space is reflexive if and only if this canonical evaluation map is surjective, in which case this evaluation map is an isometric isomorphism and the normed space is a Banach space. Those spaces for which the canonical evaluation map is surjective are called semi-reflexive spaces.

<span class="mw-page-title-main">Poisson bracket</span> Operation in Hamiltonian mechanics

In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.

In mathematics, the support of a real-valued function is the subset of the function domain containing the elements which are not mapped to zero. If the domain of is a topological space, then the support of is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used widely in mathematical analysis.

The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.

In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, Shinzo Watanabe, I. Shigekawa, and so on finally completed the foundations.

In the mathematical field of mathematical analysis, Lusin's theorem or Lusin's criterion states that an almost-everywhere finite function is measurable if and only if it is a continuous function on nearly all its domain. In the informal formulation of J. E. Littlewood, "every measurable function is nearly continuous".

In mathematics, nuclear spaces are topological vector spaces that can be viewed as a generalization of finite-dimensional Euclidean spaces and share many of their desirable properties. Nuclear spaces are however quite different from Hilbert spaces, another generalization of finite-dimensional Euclidean spaces. They were introduced by Alexander Grothendieck.

In mathematics, more specifically measure theory, there are various notions of the convergence of measures. For an intuitive general sense of what is meant by convergence of measures, consider a sequence of measures μn on a space, sharing a common collection of measurable sets. Such a sequence might represent an attempt to construct 'better and better' approximations to a desired measure μ that is difficult to obtain directly. The meaning of 'better and better' is subject to all the usual caveats for taking limits; for any error tolerance ε > 0 we require there be N sufficiently large for nN to ensure the 'difference' between μn and μ is smaller than ε. Various notions of convergence specify precisely what the word 'difference' should mean in that description; these notions are not equivalent to one another, and vary in strength.

In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.

The Sokhotski–Plemelj theorem is a theorem in complex analysis, which helps in evaluating certain integrals. The real-line version of it is often used in physics, although rarely referred to by name. The theorem is named after Julian Sochocki, who proved it in 1868, and Josip Plemelj, who rediscovered it as a main ingredient of his solution of the Riemann–Hilbert problem in 1908.

In functional analysis, a branch of mathematics, Michael selection theorem is a selection theorem named after Ernest Michael. In its most popular form, it states the following:

In probability theory, regular conditional probability is a concept that formalizes the notion of conditioning on the outcome of a random variable. The resulting conditional probability distribution is a parametrized family of probability measures called a Markov kernel.

The maximum theorem provides conditions for the continuity of an optimized function and the set of its maximizers with respect to its parameters. The statement was first proven by Claude Berge in 1959. The theorem is primarily used in mathematical economics and optimal control.

In mathematics, the Kuratowski–Ryll-Nardzewski measurable selection theorem is a result from measure theory that gives a sufficient condition for a set-valued function to have a measurable selection function. It is named after the Polish mathematicians Kazimierz Kuratowski and Czesław Ryll-Nardzewski.

In category theory and related fields of mathematics, an envelope is a construction that generalizes the operations of "exterior completion", like completion of a locally convex space, or Stone–Čech compactification of a topological space. A dual construction is called refinement.

In mathematics, the injective tensor product of two topological vector spaces (TVSs) was introduced by Alexander Grothendieck and was used by him to define nuclear spaces. An injective tensor product is in general not necessarily complete, so its completion is called the completed injective tensor products. Injective tensor products have applications outside of nuclear spaces. In particular, as described below, up to TVS-isomorphism, many TVSs that are defined for real or complex valued functions, for instance, the Schwartz space or the space of continuously differentiable functions, can be immediately extended to functions valued in a Hausdorff locally convex TVS without any need to extend definitions from real/complex-valued functions to -valued functions.

In the mathematical discipline of functional analysis, a differentiable vector-valued function from Euclidean space is a differentiable function valued in a topological vector space (TVS) whose domains is a subset of some finite-dimensional Euclidean space. It is possible to generalize the notion of derivative to functions whose domain and codomain are subsets of arbitrary topological vector spaces (TVSs) in multiple ways. But when the domain of a TVS-valued function is a subset of a finite-dimensional Euclidean space then many of these notions become logically equivalent resulting in a much more limited number of generalizations of the derivative and additionally, differentiability is also more well-behaved compared to the general case. This article presents the theory of -times continuously differentiable functions on an open subset of Euclidean space , which is an important special case of differentiation between arbitrary TVSs. This importance stems partially from the fact that every finite-dimensional vector subspace of a Hausdorff topological vector space is TVS isomorphic to Euclidean space so that, for example, this special case can be applied to any function whose domain is an arbitrary Hausdorff TVS by restricting it to finite-dimensional vector subspaces.

In optimal transport, a branch of mathematics, polar factorization of vector fields is a basic result due to Brenier (1987), with antecedents of Knott-Smith (1984) and Rachev (1985), that generalizes many existing results among which are the polar decomposition of real matrices, and the rearrangement of real-valued functions.

References

  1. Border, Kim C. (1989). Fixed Point Theorems with Applications to Economics and Game Theory. Cambridge University Press. ISBN   0-521-26564-9.
  2. Michael, Ernest (1956). "Continuous selections. I". Annals of Mathematics . Second Series. 63 (2): 361–382. doi:10.2307/1969615. hdl: 10338.dmlcz/119700 . JSTOR   1969615. MR   0077107.
  3. Shapiro, Joel H. (2016). A Fixed-Point Farrago. Springer International Publishing. pp. 68–70. ISBN   978-3-319-27978-7. OCLC   984777840.
  4. Deutsch, Frank; Kenderov, Petar (January 1983). "Continuous Selections and Approximate Selection for Set-Valued Mappings and Applications to Metric Projections". SIAM Journal on Mathematical Analysis. 14 (1): 185–194. doi:10.1137/0514015.
  5. Xu, Yuguang (December 2001). "A Note on a Continuous Approximate Selection Theorem". Journal of Approximation Theory. 113 (2): 324–325. doi: 10.1006/jath.2001.3622 .
  6. Yannelis, Nicholas C.; Prabhakar, N. D. (1983-12-01). "Existence of maximal elements and equilibria in linear topological spaces". Journal of Mathematical Economics. 12 (3): 233–245. CiteSeerX   10.1.1.702.2938 . doi:10.1016/0304-4068(83)90041-1. ISSN   0304-4068.
  7. V. I. Bogachev, "Measure Theory" Volume II, page 36.