Breakthrough Prize in Fundamental Physics Special Breakthrough Prize in Fundamental Physics | |
---|---|
Awarded for | Accomplishments in fundamental physics broadly defined |
Presented by | Breakthrough Prize Board |
Reward(s) | USD$3 million |
First awarded | 2012 |
Website | Official Website |
The Breakthrough Prize in Fundamental Physics is one of the Breakthrough Prizes, awarded by the Breakthrough Prize Board. Initially named Fundamental Physics Prize, [1] it was founded in July 2012 by Russia-born Israeli entrepreneur, venture capitalist and physicist Yuri Milner. The prize is awarded to physicists from theoretical, mathematical, or experimental physics that have made transformative contributions to fundamental physics, [2] and specifically for recent advances. [3]
Worth USD$3 million, the prize is the most lucrative physics prize in the world [4] [5] and is more than twice the amount given to the Nobel Prize awardees. [6]
Unlike the annual Breakthrough Prize in Fundamental Physics, the Special Breakthrough Prize may be awarded at any time for outstanding achievements, while the prize money is still USD$3 million. [7]
Physics Frontiers Prize has only been awarded for 2 years. Laureates are automatically nominated for next year's Breakthrough Prize in Fundamental Physics. If they are not awarded the prize the next year, they will each receive USD$300,000 and be automatically nominated for the Breakthrough Prize in Fundamental Physics in the next 5 years. [8]
This is a listing of the laureates by year (including Special Prize winners):
The New Horizons in Physics Prize, awarded to promising junior researchers, carries an award of $100,000. [24]
Year of award | New Horizons in Physics Prize laureates | Awarded for | Institutional affiliation when prize awarded |
---|---|---|---|
2013 | Niklas Beisert | Development of powerful exact methods to describe a quantum gauge theory and its associated string theory | ETH Zurich |
Davide Gaiotto | Far-reaching new insights about duality, gauge theory, and geometry, and specially for his work linking theories in different dimensions in most unexpected ways | Perimeter Institute for Theoretical Physics | |
Zohar Komargodski [25] | Dynamics of four-dimensional field theories and in particular his proof (with Schwimmer) of the “a-theorem”, which has solved a long-standing problem | Weizmann Institute of Science | |
2014 | Freddy Cachazo | Uncovering numerous structures underlying scattering amplitudes in gauge theories and gravity | Perimeter Institute for Theoretical Physics |
Shiraz Minwalla | Pioneering contributions to the study of string theory and quantum field theory; and in particular his work on the connection between the equations of fluid dynamics and Albert Einstein's equations of general relativity | Tata Institute of Fundamental Research | |
Slava Rychkov | Developing new techniques in conformal field theory, reviving the conformal bootstrap program for constraining the spectrum of operators and the structure constants in 3D and 4D CFT's | Pierre-and-Marie-Curie University | |
2015 | Sean Hartnoll | For applying holographic methods to obtain remarkable new insights into strongly interacting quantum matter. | Stanford University |
Philip C. Schuster and Natalia Toro | For pioneering the “simplified models” framework for new physics searches at the Large Hadron Collider, as well as spearheading new experimental searches for dark sectors using high-intensity electron beams. | Perimeter Institute | |
Horacio Casini | For fundamental ideas about entropy in quantum field theory and quantum gravity. | CONICET | |
Marina Huerta | Universidad Nacional de Cuyo | ||
Shinsei Ryu | University of Illinois at Urbana-Champaign | ||
Tadashi Takayanagi | Kyoto University | ||
2016 | B. Andrei Bernevig | For outstanding contributions to condensed matter physics, especially involving the use of topology to understand new states of matter. | Princeton University |
Xiao-Liang Qi | Stanford University | ||
Raphael Flauger | For outstanding contributions to theoretical cosmology. | The University of Texas at Austin | |
Leonardo Senatore | Stanford University | ||
Liang Fu | For outstanding contributions to condensed matter physics, especially involving the use of topology to understand new states of matter. | Massachusetts Institute of Technology | |
Yuji Tachikawa | For penetrating and incisive studies of supersymmetric quantum field theories. | University of Tokyo | |
2017 | Frans Pretorius | For creating the first computer code capable of simulating the inspiral and merger of binary black holes, thereby laying crucial foundations for interpreting the recent observations of gravitational waves; and for opening new directions in numerical relativity. | Princeton University |
Simone Giombi | For imaginative joint work on higher spin gravity and its holographic connection to a new soluble field theory. | Princeton University | |
Xi Yin | Harvard University | ||
Asimina Arvanitaki | For pioneering a wide range of new experimental probes of fundamental physics. | Perimeter Institute | |
Peter W. Graham | Stanford University | ||
Surjeet Rajendran | University of California, Berkeley | ||
2018 | Christopher Hirata | For fundamental contributions to understanding the physics of early galaxy formation and to sharpening and applying the most powerful tools of precision cosmology | Ohio State University |
Douglas Stanford | For profound new insights on quantum chaos and its relation to gravity. | Institute for Advanced Study and Stanford University | |
Andrea Young | For the co-invention of van der Waals heterostructures, and for the new quantum Hall phases that he discovered with them. | University of California, Santa Barbara | |
2019 | Rana Adhikari | For research on present and future ground-based detectors of gravitational waves. | California Institute of Technology |
Lisa Barsotti and Matthew Evans | Massachusetts Institute of Technology | ||
Daniel Harlow | For fundamental insights about quantum information, quantum field theory, and gravity. | Massachusetts Institute of Technology | |
Daniel L. Jafferis | Harvard University | ||
Aron Wall | Stanford University | ||
Brian Metzger | For pioneering predictions of the electromagnetic signal from a neutron star merger, and for leadership in the emerging field of multi-messenger astronomy. | Columbia University | |
2020 | Xie Chen | For incisive contributions to the understanding of topological states of matter and the relationships between them. | California Institute of Technology |
Lukasz Fidkowski | University of Washington | ||
Michael Levin | University of Chicago | ||
Max A. Metlitski | Massachusetts Institute of Technology | ||
Jo Dunkley | For the development of novel techniques to extract fundamental physics from astronomical data. | Princeton University | |
Samaya Nissanke | University of Amsterdam | ||
Kendrick Smith | Perimeter Institute | ||
Simon Caron-Huot | For profound contributions to the understanding of quantum field theory. | McGill University | |
Pedro Vieira | Perimeter Institute and ICTP-SAIFR | ||
2021 | Tracy Slatyer | For major contributions to particle astrophysics, from models of dark matter to the discovery of the “Fermi Bubbles.” | Massachusetts Institute of Technology |
Rouven Essig | For advances in the detection of sub-GeV dark matter especially in regards to the SENSEI experiment. | Stony Brook University | |
Javier Tiffenberg | Fermilab | ||
Tomer Volansky | Tel Aviv University | ||
Tien-Tien Yu | University of Oregon | ||
Ahmed Almheiri | For calculating the quantum information content of a black hole and its radiation. | Institute for Advanced Study | |
Netta Engelhardt | Massachusetts Institute of Technology | ||
Henry Maxfield | University of California, Santa Barbara | ||
Geoff Penington | University of California, Berkeley | ||
2022 [21] | Suchitra Sebastian | For high precision electronic and magnetic measurements that have profoundly changed our understanding of high temperature superconductors and unconventional insulators. | University of Cambridge |
Alessandra Corsi | For leadership in laying foundations for electromagnetic observations of sources of gravitational waves, and leadership in extracting rich information from the first observed collision of two neutron stars. | Texas Tech University | |
Gregg Hallinan | California Institute of Technology | ||
Mansi Manoj Kasliwal | California Institute of Technology | ||
Raffaella Margutti | University of California, Berkeley | ||
Dominic Else | For pioneering theoretical work formulating novel phases of non-equilibrium quantum matter, including time crystals. | Harvard University | |
Vedika Khemani | Stanford University | ||
Haruki Watanabe | University of Tokyo | ||
Norman Y. Yao | University of California, Berkeley | ||
2023 [22] | David Simmons-Duffin | For the development of analytical and numerical techniques to study conformal field theories, including the ones describing the liquid vapor critical point and the superfluid phase transition. | California Institute of Technology |
Anna Grassellino | For the discovery of major performance enhancements to niobium superconducting radio-frequency cavities, with applications ranging from accelerator physics to quantum devices. | Fermilab | |
Hannes Bernien | For the development of optical tweezer arrays to realize control of individual atoms for applications in quantum information science, metrology, and molecular physics. | University of Chicago | |
Manuel Endres | California Institute of Technology | ||
Adam M. Kaufman | JILA | ||
Kang-Kuen Ni | Harvard University | ||
Hannes Pichler | University of Innsbruck Austrian Academy of Sciences | ||
Jeff Thompson | Princeton University | ||
2024 [23] | Michael Johnson | For elucidating the sub-structure and universal characteristics of black hole photon rings, and their proposed detection by next-generation interferometric experiments. | Harvard–Smithsonian Center for Astrophysics |
Alexandru Lupsasca | Vanderbilt University | ||
Mikhail Ivanov | For contributions to our understanding of the large-scale structure of the universe and the development of new tools to extract fundamental physics from galaxy surveys. | Massachusetts Institute of Technology | |
Oliver Philcox | Columbia University and Simons Foundation | ||
Marko Simonović | University of Florence | ||
Laura M. Pérez | For the prediction, discovery, and modeling of dust traps in young circumstellar disks, solving a long-standing problem in planet formation. | University of Chile | |
Paola Pinilla | University College London | ||
Nienke van der Marel | Leiden Observatory | ||
Til Birnstiel | Ludwig Maximilian University of Munich |
The Fundamental Physics Prize trophy, a work of art created by Danish-Icelandic artist Olafur Eliasson, [26] is a silver sphere with a coiled vortex inside. The form is a toroid, or doughnut shape, resulting from two sets of intertwining three-dimensional spirals. Found in nature, these spirals are seen in animal horns, nautilus shells, whirlpools, and even galaxies and black holes. [27]
The name of the 2013 prize winner was unveiled at the culmination of a ceremony which took place on the evening of March 20, 2013 at the Geneva International Conference Centre. [28] The ceremony was hosted by Hollywood actor and science enthusiast Morgan Freeman. [29] The evening honored the 2013 laureates − 16 outstanding scientists including Stephen Hawking [30] and CERN scientists who led the decades-long effort to discover the Higgs-like particle at the Large Hadron Collider. [31] Sarah Brightman and Russian pianist Denis Matsuev performed for the guests of the ceremony.
Some have expressed reservations about such new science mega-prizes. [32]
What's not to like? Quite a lot, according to a handful of scientists... You cannot buy class, as the old saying goes, and these upstart entrepreneurs cannot buy their prizes the prestige of the Nobels. The new awards are an exercise in self-promotion for those behind them, say scientists. They could distort the meritocracy of peer-review-led research. They could cement the status quo of peer-reviewed research. They do not fund peer-reviewed research. They perpetuate the myth of the lone genius.... As much as some scientists may grumble about the new awards, the financial doping that they bring to research and the wisdom of the goals behind them, two things seem clear. First, most researchers would accept such a prize if they were offered one. Second, it is surely a good thing that the money and attention come to science rather than go elsewhere. It is fair to criticize and question the mechanism—that is the culture of research, after all—but it is the prize-givers' money to do with as they please. It is wise to accept such gifts with gratitude and grace. [33]
Ashoke Sen FRS is an Indian theoretical physicist and distinguished professor at the International Centre for Theoretical Sciences (ICTS), Bangalore. A former distinguished professor at the Harish-Chandra Research Institute, Allahabad, He is also an honorary fellow in National Institute of Science Education and Research (NISER) India he is also a Morningstar Visiting professor at MIT and a distinguished professor at the Korea Institute for Advanced Study. His main area of work is string theory. He was among the first recipients of the Breakthrough Prize in Fundamental Physics "for opening the path to the realization that all string theories are different limits of the same underlying theory".
Shiraz Naval Minwalla is an Indian theoretical physicist and string theorist. He is a faculty member in the Department of Theoretical Physics at Tata Institute of Fundamental Research, Mumbai. Prior to his present position, Minwalla was a Harvard Junior Fellow and subsequently an assistant professor at Harvard University.
The MIT Center for Theoretical Physics (CTP) is the hub of theoretical nuclear physics, particle physics, and quantum information research at MIT. It is a subdivision of MIT Laboratory for Nuclear Science and Department of Physics.
The Stanford Institute for Theoretical Physics (SITP) is a research institute within the Physics Department at Stanford University. Led by 16 physics faculty members, the institute conducts research in high energy and condensed matter theoretical physics.
Giorgio Parisi is an Italian theoretical physicist, whose research has focused on quantum field theory, statistical mechanics and complex systems. His best known contributions are the QCD evolution equations for parton densities, obtained with Guido Altarelli, known as the Altarelli–Parisi or DGLAP equations, the exact solution of the Sherrington–Kirkpatrick model of spin glasses, the Kardar–Parisi–Zhang equation describing dynamic scaling of growing interfaces, and the study of whirling flocks of birds. He was awarded the 2021 Nobel Prize in Physics jointly with Klaus Hasselmann and Syukuro Manabe for groundbreaking contributions to theory of complex systems, in particular "for the discovery of the interplay of disorder and fluctuations in physical systems from atomic to planetary scales".
Peter van Nieuwenhuizen is a Dutch theoretical physicist. He is a distinguished Professor at Stony Brook University in the United States. Widely known for his contributions to String theory, Supersymmetry, Supergravity and Field theory.
Lyn Evans CBE FINSTP FLSW FRS, is a Welsh scientist who served as the project leader of the Large Hadron Collider in Switzerland. Based at CERN, in 2012 he became the director of the Linear Collider Collaboration, an international organisation managing development of next generation particle colliders, including the International Linear Collider and the Compact Linear Collider.
The Breakthrough Prize in Life Sciences is a scientific award, funded by internet entrepreneurs Mark Zuckerberg and Priscilla Chan of Facebook; Sergey Brin of Google; entrepreneur and venture capitalist Yuri Milner; and Anne Wojcicki, one of the founders of the genetics company 23andMe.
The Breakthrough Prizes are a set of international awards bestowed in three categories by the Breakthrough Prize Board in recognition of scientific advances. The awards are part of several "Breakthrough" initiatives founded and funded by Yuri Milner and his wife Julia Milner, along with Breakthrough Initiatives and Breakthrough Junior Challenge.
The Breakthrough Prize in Mathematics is an annual award of the Breakthrough Prize series announced in 2013.
Michele Limon is an Italian research scientist at the University of Pennsylvania. Limon studied physics at the Università degli Studi di Milano in Milan, Italy and completed his post-doctoral work at the University of California, Berkeley. He has been conducting research for more than 30 years and has experience in the design of ground, balloon and space-based instrumentation. His academic specialties include Astrophysics, Cosmology, Instrumentation Development, and Cryogenics.
Hitoshi Murayama (村山斉) is a Japanese-born physicist with notable contributions in the fields of particle physics and cosmology. He is currently a professor at the Center for Theoretical Physics at the University of California, Berkeley, and was the Director of the Kavli Institute for the Physics and Mathematics of the Universe at the University of Tokyo.
Hiranya Vajramani Peiris is a British astrophysicist at the University of Cambridge, where she holds the Professorship of Astrophysics (1909). She is best known for her work on the cosmic microwave background radiation, and interdisciplinary links between cosmology and high-energy physics. She was one of 27 scientists who received the Breakthrough Prize in Fundamental Physics in 2018 for their "detailed maps of the early universe".
Peter Shawhan is an American physicist. He is currently professor of physics at the University of Maryland and was a co-recipient of the Breakthrough Prize in Fundamental Physics, the Gruber Prize in Cosmology, and the Bruno Rossi Prize for his work on LIGO.
Marina Huerta is an Argentinian theoretical physicist and a physics professor. She is known for her work on quantum entropy in quantum field theory. She has provided a new interpretation of the Bekenstein bound. As of 2020, she has 29 peer-reviewed publications with more than 2000 citations.
Ronen Eldan is an Israeli mathematician. Eldan is a professor at the Weizmann Institute of Science working on probability theory, mathematical analysis, theoretical computer science and the theory of machine learning. He received the 2018 Erdős Prize, the 2022 Blavatnik Award for Young Scientists and the 2023 New Horizons Breakthrough Prize in Mathematics. He was a speaker at the 2022 International Congress of Mathematicians.
Daniel Harlow is the Jerrold R. Zacharias Career Development Associate Professor of Physics at the Massachusetts Institute of Technology.
Rana X. Adhikari is an American experimental physicist. He is a professor of physics at the California Institute of Technology (Caltech) and an associate faculty member of the International Centre for Theoretical Sciences of Tata Institute of Fundamental Research (ICTS-TIFR).
The 2021 Nobel Prize in Physiology or Medicine was jointly awarded to the American physiologist David Julius and Armenian-American neuroscientist Ardem Patapoutian "for the discovery of receptors for temperature and touch." During the award ceremony on December 10, 2021, Nobel Assembly at Karolinska Institutet member Patrik Ernfors expressed:
"The 2021 Nobel Prize laureates have explained fundamental mechanisms underpinning how we sense the world within and around us. Our temperature and touch sensors are used all the time in every day of our lives. They continuously keep us updated about our environment, and without them even the simplest of our daily tasks would be impossible to perform."