Chris Hirata

Last updated
Christopher M. Hirata
Born (1982-11-30) November 30, 1982 (age 41)
Alma mater California Institute of Technology, Princeton University
Scientific career
Fields Cosmology Astrophysics
Institutions Ohio State University
Thesis Weak gravitational lensing theory and data analysis  (2005)
Doctoral advisor Uroš Seljak

Christopher Michael Hirata (born November 30, 1982) is an American cosmologist and astrophysicist.

Contents

Hirata was 13 years old when he won the gold medal in 1996 at the International Physics Olympiad. [1] He received a bachelor's degree in Physics at Caltech in 2001, at the age of 18. [2] He received his PhD under the supervision of Uroš Seljak in 2005 from Princeton University in Astrophysics (thesis: "Weak Gravitational Lensing Theory and Data Analysis"). [3] From 2005 to 2007 he was a visiting scholar at the Institute for Advanced Study. From 2006 to 2012 he was assistant professor and then full professor at Caltech before moving to the Ohio State University the following academic year in the same capacity. He is currently a professor at OSU's Center for Cosmology and AstroParticle Physics (CCAPP).

Research

Hirata's research emphasis is Cosmic Microwave Background (CMB), Dark energy and accelerating expansion of the universe, galaxy clusters and the large-scale structure of the universe (and the formation of these structures, the Reionization epoch), and gravitational lenses as a tool of Cosmology. Hirata works both in theory and in the analysis of observational data as well as in the design of telescopes (specifically NASA's next generation of space telescopes). His overarching focus is on cosmology and on Dark energy.

Hirata is considered a leading exponent of precision cosmology, combining interdisciplinary computer studies, theoretical studies, and observational astronomy including instrument development. [4]

In 2010, with Dmitriy Tseliakhovich, he pointed to an unprecedented effect in cosmological perturbation theory for the calculation of the formation of the first structures in the universe. [5] It is based on the fact that the speed of sound in baryonic matter (as opposed to dark matter) decreased drastically (from relativistic to thermal velocities) when the first atoms formed (recombination epoch), which leads to supersonic velocity currents of baryonic matter (which under gravitational influence of faster dark matter moves) and quadratic perturbation terms. According to Hirata and Tseliakhovich, this leads to a suppression of the formation of the first structures with observable effects.

With others, he initiated a program for analyzing information from astronomical data for possible inferences on fundamental questions of particle physics and what it might suggest for creating new observation programs. A central question is whether the acceleration of the universe indicates dark energy (retention of general relativity but with an additional dynamic scalar field) or a modification of the general theory of relativity.

He is a member of NASA's proposed Nancy Grace Roman Space Telescope (previously named the Wide Field Infrared Survey Telescope space telescope).

Accolades

Related Research Articles

<span class="mw-page-title-main">Big Bang</span> How the universe expanded from a hot, dense state

The Big Bang is a physical theory that describes how the universe expanded from an initial state of high density and temperature. It was first proposed in 1927 by Roman Catholic priest and physicist Georges Lemaître. Various cosmological models of the Big Bang explain the evolution of the observable universe from the earliest known periods through its subsequent large-scale form. These models offer a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background (CMB) radiation, and large-scale structure. The overall uniformity of the universe, known as the flatness problem, is explained through cosmic inflation: a sudden and very rapid expansion of space during the earliest moments. However, physics currently lacks a widely accepted theory of quantum gravity that can successfully model the earliest conditions of the Big Bang.

<span class="mw-page-title-main">Physical cosmology</span> Branch of cosmology which studies mathematical models of the universe

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

<span class="mw-page-title-main">Cosmic microwave background</span> Trace radiation from the early universe

The cosmic microwave background is microwave radiation that fills all space in the observable universe. It is a remnant that provides an important source of data on the primordial universe. With a standard optical telescope, the background space between stars and galaxies is almost completely dark. However, a sufficiently sensitive radio telescope detects a faint background glow that is almost uniform and is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of the CMB in 1965 by American radio astronomers Arno Penzias and Robert Wilson was the culmination of work initiated in the 1940s.

In astronomy, dark matter is a hypothetical form of matter that appears not to interact with light or the electromagnetic field. Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be seen. Such effects occur in the context of formation and evolution of galaxies, gravitational lensing, the observable universe's current structure, mass position in galactic collisions, the motion of galaxies within galaxy clusters, and cosmic microwave background anisotropies.

<span class="mw-page-title-main">Gravitational lens</span> Light bending by mass between source and observer

A gravitational lens is matter, such as a cluster of galaxies or a point particle, that bends light from a distant source as it travels toward an observer. The amount of gravitational lensing is described by Albert Einstein's general theory of relativity with much greater accuracy than Newtonian physics, which treats light as corpuscles travelling at the speed of light.

A non-standard cosmology is any physical cosmological model of the universe that was, or still is, proposed as an alternative to the then-current standard model of cosmology. The term non-standard is applied to any theory that does not conform to the scientific consensus. Because the term depends on the prevailing consensus, the meaning of the term changes over time. For example, hot dark matter would not have been considered non-standard in 1990, but would be in 2010. Conversely, a non-zero cosmological constant resulting in an accelerating universe would have been considered non-standard in 1990, but is part of the standard cosmology in 2010.

<span class="mw-page-title-main">Dark matter halo</span> Theoretical cosmological structure

In modern models of physical cosmology, a dark matter halo is a basic unit of cosmological structure. It is a hypothetical region that has decoupled from cosmic expansion and contains gravitationally bound matter. A single dark matter halo may contain multiple virialized clumps of dark matter bound together by gravity, known as subhalos. Modern cosmological models, such as ΛCDM, propose that dark matter halos and subhalos may contain galaxies. The dark matter halo of a galaxy envelops the galactic disc and extends well beyond the edge of the visible galaxy. Thought to consist of dark matter, halos have not been observed directly. Their existence is inferred through observations of their effects on the motions of stars and gas in galaxies and gravitational lensing. Dark matter halos play a key role in current models of galaxy formation and evolution. Theories that attempt to explain the nature of dark matter halos with varying degrees of success include cold dark matter (CDM), warm dark matter, and massive compact halo objects (MACHOs).

In physical cosmology, structure formation is the formation of galaxies, galaxy clusters and larger structures from small early density fluctuations. The universe, as is now known from observations of the cosmic microwave background radiation, began in a hot, dense, nearly uniform state approximately 13.8 billion years ago. However, looking at the night sky today, structures on all scales can be seen, from stars and planets to galaxies. On even larger scales, galaxy clusters and sheet-like structures of galaxies are separated by enormous voids containing few galaxies. Structure formation attempts to model how these structures were formed by gravitational instability of small early ripples in spacetime density or another emergence.

<span class="mw-page-title-main">Cosmology</span> Scientific study of the origin, evolution, and eventual fate of the universe

Cosmology is a branch of physics and metaphysics dealing with the nature of the universe, the cosmos. The term cosmology was first used in English in 1656 in Thomas Blount's Glossographia, and in 1731 taken up in Latin by German philosopher Christian Wolff, in Cosmologia Generalis. Religious or mythological cosmology is a body of beliefs based on mythological, religious, and esoteric literature and traditions of creation myths and eschatology. In the science of astronomy, cosmology is concerned with the study of the chronology of the universe.

<span class="mw-page-title-main">Richard Ellis (astronomer)</span> Welsh astronomer

Richard Salisbury Ellis is Professor of Astrophysics at the University College London. He previously served as the Steele Professor of Astronomy at the California Institute of Technology (Caltech). He was awarded the 2011 Gold Medal of the Royal Astronomical Society, in 2022 the Royal Medal of the Royal Society and in 2023 the Gruber Prize in Cosmology.

The expansion of the universe is the increase in distance between gravitationally unbound parts of the observable universe with time. It is an intrinsic expansion; the universe does not expand "into" anything and does not require space to exist "outside" it. To any observer in the universe, it appears that all but the nearest galaxies recede at speeds that are proportional to their distance from the observer, on average. While objects cannot move faster than light, this limitation only applies with respect to local reference frames and does not limit the recession rates of cosmologically distant objects.

An inhomogeneous cosmology is a physical cosmological theory which, unlike the currently widely accepted cosmological concordance model, assumes that inhomogeneities in the distribution of matter across the universe affect local gravitational forces enough to skew our view of the Universe. When the universe began, matter was distributed homogeneously, but over billions of years, galaxies, clusters of galaxies, and superclusters have coalesced, and must, according to Einstein's theory of general relativity, warp the space-time around them. While the concordance model acknowledges this fact, it assumes that such inhomogeneities are not sufficient to affect large-scale averages of gravity in our observations. When two separate studies claimed in 1998-1999 that high redshift supernovae were further away than our calculations showed they should be, it was suggested that the expansion of the universe is accelerating, and dark energy, a repulsive energy inherent in space, was proposed to explain the acceleration. Dark energy has since become widely accepted, but it remains unexplained. Accordingly, some scientists continue to work on models that might not require dark energy. Inhomogeneous cosmology falls into this class.

The golden age of cosmology is a term often used to describe the period from 1992 to the present in which important advances in observational cosmology have been made.

In physical cosmology and astronomy, dark energy is an unknown form of energy that affects the universe on the largest scales. Its primary effect is to drive the accelerating expansion of the universe. Assuming that the lambda-CDM model of cosmology is correct, dark energy is the dominant component of the universe, contributing 68% of the total energy in the present-day observable universe while dark matter and ordinary (baryonic) matter contribute 26% and 5%, respectively, and other components such as neutrinos and photons are nearly negligible. Dark energy's density is very low: 6×10−10 J/m3, much less than the density of ordinary matter or dark matter within galaxies. However, it dominates the universe's mass–energy content because it is uniform across space.

Modified Newtonian dynamics (MOND) is a hypothesis that proposes a modification of Newton's second law to account for observed properties of galaxies. It is an alternative to the hypothesis of dark matter in terms of explaining why galaxies do not appear to obey the currently understood laws of physics.

<span class="mw-page-title-main">Primordial black hole</span> Hypothetical black hole formed soon after the Big Bang

In cosmology, primordial black holes (PBHs) are hypothetical black holes that formed soon after the Big Bang. In the inflationary era and early radiation-dominated universe, extremely dense pockets of subatomic matter may have been tightly packed to the point of gravitational collapse, creating primordial black holes without the supernova compression needed to make black holes today. Because the creation of primordial black holes would pre-date the first stars, they are not limited to the narrow mass range of stellar black holes.

The Hans A. Bethe Prize, is presented annually by the American Physical Society. The prize honors outstanding work in theory, experiment or observation in the areas of astrophysics, nuclear physics, nuclear astrophysics, or closely related fields. The prize consists of $10,000 and a certificate citing the contributions made by the recipient.

<span class="mw-page-title-main">Uroš Seljak</span> Slovenian cosmologist

Uroš Seljak is a Slovenian cosmologist and a professor of astronomy and physics at University of California, Berkeley. He is particularly well-known for his research in cosmology and approximate Bayesian statistical methods.

<span class="mw-page-title-main">Jenny Wagner</span> German physicist and cosmologist

Jenny Wagner is a German physicist, cosmologist, and book author.

References

  1. Van Duch, Margaret (April 2, 1995). "Head of the Class". Chicago Tribune.
  2. "Caltech senior heads for graduation with 4.2 GPA, record of leadership, and is only 18". Caltech News. 13 June 2001.
  3. Weak gravitational lensing theory and data analysis / Christopher Michael Hirata - Princeton University Library Catalog via catalog.princeton.edu.
  4. "Ohio State Researcher Wins Top Prize for Young Astronomers". 31 January 2014.
  5. Tseliakhovich, Dmitriy; Hirata, Christopher (2010). "Relative velocity of dark matter and baryonic fluids and the formation of the first structures". Physical Review D. 82 (8): 083520. arXiv: 1005.2416 . Bibcode:2010PhRvD..82h3520T. doi:10.1103/PhysRevD.82.083520. S2CID   32436298.
  6. "Breakthrough Prize – Fundamental Physics Breakthrough Prize Laureates – Christopher Hirata". breakthroughprize.org.