Aron Wall

Last updated

Aron Clark Wall is an American theoretical physicist, specializing in quantum gravity. He is Professor of Theoretical Physics at the University of Cambridge, and is one of the winners of the 2019 New Horizons in Physics Prize. [1]

Contents

Biography and education

He was born on June 7, 1984, the son of programmer Larry Wall. He received a B.A. in liberal arts in 2005 from St. John's College (Annapolis/Santa Fe) and a Ph.D. in physics in 2011 from the Maryland Center for Fundamental Physics of the University of Maryland, College Park, under advisor Ted Jacobson.

From 2011 to 2014 he was a Simons postdoctoral fellow at the University of California, Santa Barbara, from 2014 to 2017 a fellow at the Institute for Advanced Study in Princeton, from 2017 to 2019 a fellow at the Stanford Institute for Theoretical Physics. In 2019, he joined the Cambridge University Department of Applied Mathematics and Theoretical Physics as a lecturer, and in 2024 he was promoted to professor of theoretical physics.

Research

In 2016, together with Ping Gao and Daniel Louis Jafferis  [ de ], he proposed a mechanism for traversable wormholes without exotic matter. [2] It is based on the interpretation of wormholes as pairs of quantum entangled particles (EPR) by Leonard Susskind and Juan Martín Maldacena, known as the ER-EPR conjecture; however, Wall and colleagues did not use the usual Einstein-Rosen Bridges, but that their wormhole model provides a mathematically equivalent description to quantum teleportation. [3]

Most cited peer-reviewed publications

Personal life

According to his website, he is active in the New Life Church of the Nazarene. [5]

Related Research Articles

The holographic principle is a property of string theories and a supposed property of quantum gravity that states that the description of a volume of space can be thought of as encoded on a lower-dimensional boundary to the region – such as a light-like boundary like a gravitational horizon. First proposed by Gerard 't Hooft, it was given a precise string theoretic interpretation by Leonard Susskind, who combined his ideas with previous ones of 't Hooft and Charles Thorn. Susskind said, "The three-dimensional world of ordinary experience—the universe filled with galaxies, stars, planets, houses, boulders, and people—is a hologram, an image of reality coded on a distant two-dimensional surface." As pointed out by Raphael Bousso, Thorn observed in 1978, that string theory admits a lower-dimensional description in which gravity emerges from it in what would now be called a holographic way. The prime example of holography is the AdS/CFT correspondence.

A wormhole is a hypothetical structure connecting disparate points in spacetime, and is based on a special solution of the Einstein field equations.

<span class="mw-page-title-main">Kip Thorne</span> American physicist and writer (born 1940)

Kip Stephen Thorne is an American theoretical physicist and writer known for his contributions in gravitational physics and astrophysics. Along with Rainer Weiss and Barry C. Barish, he was awarded the 2017 Nobel Prize in Physics for his contributions to the LIGO detector and the observation of gravitational waves.

<span class="mw-page-title-main">Black hole thermodynamics</span> Area of study

In physics, black hole thermodynamics is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons. As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the understanding of quantum gravity, leading to the formulation of the holographic principle.

<span class="mw-page-title-main">Juan Maldacena</span> Argentine physicist (born 1968)

Juan Martín Maldacena is an Argentine theoretical physicist and the Carl P. Feinberg Professor in the School of Natural Sciences at the Institute for Advanced Study, Princeton. He has made significant contributions to the foundations of string theory and quantum gravity. His most famous discovery is the AdS/CFT correspondence, a realization of the holographic principle in string theory.

<span class="mw-page-title-main">Leonard Susskind</span> American theoretical physicist (born 1940)

Leonard Susskind is an American theoretical physicist, Professor of theoretical physics at Stanford University and founding director of the Stanford Institute for Theoretical Physics. His research interests are string theory, quantum field theory, quantum statistical mechanics and quantum cosmology. He is a member of the US National Academy of Sciences, and the American Academy of Arts and Sciences, an associate member of the faculty of Canada's Perimeter Institute for Theoretical Physics, and a distinguished professor of the Korea Institute for Advanced Study.

<span class="mw-page-title-main">Joseph Polchinski</span> American theoretical physicist and string theorist (1954–2018)

Joseph Gerard Polchinski Jr. was an American theoretical physicist and string theorist.

The chronology protection conjecture is a hypothesis first proposed by Stephen Hawking that laws of physics beyond those of standard general relativity prevent time travel on all but microscopic scales—even when the latter theory states that it should be possible. The permissibility of time travel is represented mathematically by the existence of closed timelike curves in some solutions to the field equations of general relativity. The chronology protection conjecture should be distinguished from chronological censorship under which every closed timelike curve passes through an event horizon, which might prevent an observer from detecting the causal violation.

<span class="mw-page-title-main">Subir Sachdev</span> Indian physicist

Subir Sachdev is Herchel Smith Professor of Physics at Harvard University specializing in condensed matter. He was elected to the U.S. National Academy of Sciences in 2014, received the Lars Onsager Prize from the American Physical Society and the Dirac Medal from the ICTP in 2018, and was elected Foreign Member of the Royal Society ForMemRS in 2023. He was a co-editor of the Annual Review of Condensed Matter Physics 2017–2019, and is Editor-in-Chief of Reports on Progress in Physics 2022-.

<span class="mw-page-title-main">Entropic gravity</span> Theory in modern physics that describes gravity as an entropic force

Entropic gravity, also known as emergent gravity, is a theory in modern physics that describes gravity as an entropic force—a force with macro-scale homogeneity but which is subject to quantum-level disorder—and not a fundamental interaction. The theory, based on string theory, black hole physics, and quantum information theory, describes gravity as an emergent phenomenon that springs from the quantum entanglement of small bits of spacetime information. As such, entropic gravity is said to abide by the second law of thermodynamics under which the entropy of a physical system tends to increase over time.

The Bousso bound captures a fundamental relation between quantum information and the geometry of space and time. It appears to be an imprint of a unified theory that combines quantum mechanics with Einstein's general relativity. The study of black hole thermodynamics and the information paradox led to the idea of the holographic principle: the entropy of matter and radiation in a spatial region cannot exceed the Bekenstein–Hawking entropy of the boundary of the region, which is proportional to the boundary area. However, this "spacelike" entropy bound fails in cosmology; for example, it does not hold true in our universe.

Raphael Bousso is a theoretical physicist and cosmologist. He is a professor at the Berkeley Center for Theoretical Physics in the Department of Physics, UC Berkeley. He is known for the Bousso bound on the information content of the universe. With Joseph Polchinski, Bousso proposed the string theory landscape as a solution to the cosmological constant problem.

A black hole firewall is a hypothetical phenomenon where an observer falling into a black hole encounters high-energy quanta at the event horizon. The "firewall" phenomenon was proposed in 2012 by physicists Ahmed Almheiri, Donald Marolf, Joseph Polchinski, and James Sully as a possible solution to an apparent inconsistency in black hole complementarity. The proposal is sometimes referred to as the AMPS firewall, an acronym for the names of the authors of the 2012 paper. The potential inconsistency pointed out by AMPS had been pointed out earlier by Samir Mathur who used the argument in favour of the fuzzball proposal. The use of a firewall to resolve this inconsistency remains controversial, with physicists divided as to the solution to the paradox.

ER = EPR is a conjecture in physics stating that two entangled particles are connected by a wormhole and is thought by some to be a basis for unifying general relativity and quantum mechanics into a theory of everything.

The Ryu–Takayanagi conjecture is a conjecture within holography that posits a quantitative relationship between the entanglement entropy of a conformal field theory and the geometry of an associated anti-de Sitter spacetime. The formula characterizes "holographic screens" in the bulk; that is, it specifies which regions of the bulk geometry are "responsible to particular information in the dual CFT". The conjecture is named after Shinsei Ryu and Tadashi Takayanagi, who jointly published the result in 2006. As a result, the authors were awarded the 2015 Breakthrough Prize in Fundamental Physics for "fundamental ideas about entropy in quantum field theory and quantum gravity", and awarded the 2024 Dirac Medal of the ICTP for "their insights on quantum entropy in quantum gravity and quantum field theories". The formula was generalized to a covariant form in 2007.

Douglas Stanford is an American theoretical physicist. He is an associate professor of physics at Stanford Institute for Theoretical Physics of Stanford University. His research interests include quantum gravity, quantum field theory and string theory. Stanford was awarded the 2018 New Horizons in Physics Prize by Fundamental Physics Prize Foundation for his work on improving the understanding of quantum mechanics of black holes via chaos theory.

Marina Huerta is an Argentinian theoretical physicist and a physics professor. She is known for her work on quantum entropy in quantum field theory. She has provided a new interpretation of the Bekenstein bound. As of 2020, she has 29 peer-reviewed publications with more than 2000 citations.

Daniel Louis Jafferis is an American theoretical physicist, known for his research on quantum gravity, supersymmetric quantum field theory, and string theory.

Shinsei Ryū is a Japanese theoretical physicist who works in theoretical solid-state physics. He is currently a professor at Princeton University.

Tadashi Takayanagi; born October 11, 1975 in Tokyo, is a Japanese theoretical physicist. He is a professor at the Yukawa Institute for Theoretical Physics at Kyoto University.

References

  1. Aron Wall - 2019 New Horizons in Physics Prize
  2. Natalie Wolchover: Newfound Wormhole Allows Information to Escape Black Holes, Quanta Magazine, October 23, 2017
  3. University, Stanford (2018-10-17). "Aron Wall wins Breakthrough New Horizons Prize". Stanford News. Retrieved 2020-01-12.
  4. 1 2 3 4 5 6 Google Scholar user page . Accessed Oct. 30, 2021
  5. Personal homepage