Ted Jacobson

Last updated
Ted Jacobson
BornNovember 27, 1954 (1954-11-27) (age 67)
Nationality United States
Alma mater University of Texas at Austin
Known for Quantum gravity
Scientific career
Fields Theoretical physics
Institutions University of Maryland
Doctoral advisor Cécile DeWitt-Morette
Website

Theodore A. "Ted" Jacobson (born November 27, 1954) is an American theoretical physicist. He is known for his work on the connection between gravity and thermodynamics. In particular, in 1995 Jacobson proved that the Einstein field equations describing relativistic gravity can be derived from thermodynamic considerations. [1] [2]

Contents

Jacobson is professor of physics at the University of Maryland's Center for Fundamental Physics. His current research focuses on the dark energy problem and cosmic expansion. [3] [4]

See also

Related Research Articles

General relativity Theory of gravitation as curved spacetime

General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics. General relativity generalizes special relativity and refines Newton's law of universal gravitation, providing a unified description of gravity as a geometric property of space and time or four-dimensional spacetime. In particular, the curvature of spacetime is directly related to the energy and momentum of whatever matter and radiation are present. The relation is specified by the Einstein field equations, a system of second order partial differential equations.

In physics, string theory is a theoretical framework in which the point-like particles of particle physics are replaced by one-dimensional objects called strings. String theory describes how these strings propagate through space and interact with each other. On distance scales larger than the string scale, a string looks just like an ordinary particle, with its mass, charge, and other properties determined by the vibrational state of the string. In string theory, one of the many vibrational states of the string corresponds to the graviton, a quantum mechanical particle that carries the gravitational force. Thus, string theory is a theory of quantum gravity.

Theory of relativity Two interrelated physical theories by Albert Einstein

The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity and general relativity, proposed and published in 1905 and 1915, respectively. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to other forces of nature. It applies to the cosmological and astrophysical realm, including astronomy.

Theory of everything Hypothetical physical concept

A theory of everything, final theory, ultimate theory, unified field theory or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all physical aspects of the universe. Finding a theory of everything is one of the major unsolved problems in physics. String theory and M-theory have been proposed as theories of everything.

Wormhole Hypothetical topological feature of spacetime

A wormhole is a speculative structure linking disparate points in spacetime, and is based on a special solution of the Einstein field equations.

Gravity Fundamental force attracting uneven distribution of masses together

In physics, gravity (from Latin gravitas 'weight') is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is by far the weakest of the four fundamental interactions, approximately 1038 times weaker than the strong interaction, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak interaction. As a result, it has no significant influence at the level of subatomic particles. However, gravity is the most significant interaction between objects at the macroscopic scale, and it determines the motion of planets, stars, galaxies, and even light.

Cosmological constant Constant representing stress–energy density of the vacuum

In cosmology, the cosmological constant, alternatively called Einstein's cosmological constant, is the constant coefficient of a term Albert Einstein temporarily added to his field equations of general relativity. He later removed it. Much later it was revived and reinterpreted as the energy density of space, or vacuum energy, that arises in quantum mechanics. It is closely associated with the concept of dark energy.

Timeline of black hole physics

White hole Hypothetical region of spacetime

In general relativity, a white hole is a theoretical region of spacetime and singularity that cannot be entered from the outside, although energy-matter, light and information can escape from it. In this sense, it is the reverse of a black hole, which can be entered only from the outside and from which energy-matter, light and information cannot escape. White holes appear in the theory of eternal black holes. In addition to a black hole region in the future, such a solution of the Einstein field equations has a white hole region in its past. This region does not exist for black holes that have formed through gravitational collapse, however, nor are there any observed physical processes through which a white hole could be formed.

In theoretical physics, geometrodynamics is an attempt to describe spacetime and associated phenomena completely in terms of geometry. Technically, its goal is to unify the fundamental forces and reformulate general relativity as a configuration space of three-metrics, modulo three-dimensional diffeomorphisms. It was enthusiastically promoted by John Wheeler in the 1960s, and work on it continues in the 21st century.

Introduction to general relativity Theory of gravity by Albert Einstein

General relativity is a theory of gravitation developed by Albert Einstein between 1907 and 1915. The theory of general relativity says that the observed gravitational effect between masses results from their warping of spacetime.

Induced gravity is an idea in quantum gravity that spacetime curvature and its dynamics emerge as a mean field approximation of underlying microscopic degrees of freedom, similar to the fluid mechanics approximation of Bose–Einstein condensates. The concept was originally proposed by Andrei Sakharov in 1967.

Bekenstein bound Upper limit on entropy in physics

In physics, the Bekenstein bound is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of energy—or conversely, the maximal amount of information required to perfectly describe a given physical system down to the quantum level. It implies that the information of a physical system, or the information necessary to perfectly describe that system, must be finite if the region of space and the energy are finite. In computer science, this implies that there is a maximal information-processing rate for a physical system that has a finite size and energy, and that a Turing machine with finite physical dimensions and unbounded memory is not physically possible.

Thanu Padmanabhan Indian physicist and cosmologist

Thanu Padmanabhan was an Indian theoretical physicist and cosmologist whose research spanned a wide variety of topics in gravitation, structure formation in the universe and quantum gravity. He published nearly 300 papers and reviews in international journals and ten books in these areas. He made several contributions related to the analysis and modelling of dark energy in the universe and the interpretation of gravity as an emergent phenomenon. He was a Distinguished Professor at the Inter-University Centre for Astronomy and Astrophysics (IUCAA) at Pune, India.

Charles W. Misner American physicist

Charles W. Misner is an American physicist and one of the authors of Gravitation. His specialties include general relativity and cosmology. His work has also provided early foundations for studies of quantum gravity and numerical relativity.

Jürgen Ehlers German physicist

Jürgen Ehlers was a German physicist who contributed to the understanding of Albert Einstein's theory of general relativity. From graduate and postgraduate work in Pascual Jordan's relativity research group at Hamburg University, he held various posts as a lecturer and, later, as a professor before joining the Max Planck Institute for Astrophysics in Munich as a director. In 1995, he became the founding director of the newly created Max Planck Institute for Gravitational Physics in Potsdam, Germany.

Theoretical physics Branch of physics

Theoretical physics is a branch of physics that employs mathematical models and abstractions of physical objects and systems to rationalize, explain and predict natural phenomena. This is in contrast to experimental physics, which uses experimental tools to probe these phenomena.

Øyvind Grøn Norwegian physicist

Øyvind Grøn is a Norwegian physicist.

Entropic gravity Theory in modern physics that describes gravity as an entropic force

Entropic gravity, also known as emergent gravity, is a theory in modern physics that describes gravity as an entropic force—a force with macro-scale homogeneity but which is subject to quantum-level disorder—and not a fundamental interaction. The theory, based on string theory, black hole physics, and quantum information theory, describes gravity as an emergent phenomenon that springs from the quantum entanglement of small bits of spacetime information. As such, entropic gravity is said to abide by the second law of thermodynamics under which the entropy of a physical system tends to increase over time.

References

  1. Ted Jacobson, "Thermodynamics of Spacetime: The Einstein Equation of State", Physical Review Letters , Vol. 75, Issue 7 (August 14, 1995), pp. 1260-1263, doi : 10.1103/PhysRevLett.75.1260, Bibcode : 1995PhRvL..75.1260J. Also at arXiv : gr-qc/9504004, April 4, 1995. Also available here and here. Additionally available as an entry in the Gravity Research Foundation's 1995 essay competition. Mirror link.
  2. Lee Smolin, Three Roads to Quantum Gravity (New York, N.Y.: Basic Books, 2002), pp. 173 and 175, ISBN   0465078362, LCCN   2007-310371.
  3. Bob Swarup, "Much Ado About Nothing: Does the vacuum regenerate itself to fill the gaps as spacetime is pulled apart? Could a growing vacuum explain dark energy?", FQXi Community (Foundational Questions Institute), May 8, 2009.
  4. "Ted Jacobson", ScientificCommons . A list of Jacobson's recent publications.