Hybrid plasmonic waveguide

Last updated

A hybrid plasmonic waveguide is an optical waveguide that achieves strong light confinement by coupling the light guided by a dielectric waveguide and a plasmonic waveguide. It is formed by separating a medium of high refractive index (usually silicon) from a metal surface (usually gold or silver) by a small gap.

Contents

Cross section of hybrid plasmonic waveguide. Power propagates in the z direction. Hybridguide.png
Cross section of hybrid plasmonic waveguide. Power propagates in the z direction.

History

Dielectric waveguides use total internal reflection to confine light in a high index region. They can guide light over a long distance with very low loss, but their light confinement ability is limited by diffraction. Plasmonic waveguides, on the other hand, use surface plasmon to confine light near a metal surface. The light confinement ability of plasmonic waveguides is not limited by diffraction, [1] and, as a result, they can confine light to very small volumes. However, these guides suffer significant propagation loss because of the presence of metal as part of the guiding structure. [2] The aim of designing the hybrid plasmonic waveguide was to combine these two different wave guiding schemes and achieve high light confinement without suffering large loss. [3] [4] Many different variations of this structure have been proposed. Many other types of hybrid plasmonic waveguides have been proposed since then to improve light confinement ability or to reduce fabrication complexity. [5] [6]

Guided power density in a hybrid plasmonic waveguide. Light propagates in the z-direction FieldProfileNew.png
Guided power density in a hybrid plasmonic waveguide. Light propagates in the z-direction

Principle of operation

The operation of the hybrid plasmonic waveguides can be explained using the concept of mode coupling. The most commonly used hybrid plasmonic waveguide consists of a silicon nanowire placed very near a metal surface and separated by a low index region. The silicon waveguide supports dielectric waveguide mode, which is mostly confined in silicon. The metal surface supports surface plasmon, which is confined near the metal surface. When these two structures are brought close to each other, the dielectric waveguide mode supported by the silicon nanowire couples to the surface plasmon mode supported by the metal surface. As a result of this mode coupling, light becomes highly confined in the region between the metal and the high index region (silicon nanowire).

Applications

Hybrid plasmonic waveguide provides large confinement of light at a lower loss compared to many previously reported plasmonic waveguides. [7] It is also compatible with silicon photonics technology, and can be integrated with silicon waveguides on the same chip. Similar to a slot-waveguide, it can also confine light in the low index medium. Combination of these attractive features has stimulated worldwide research activity on the application of this new guiding scheme. Some notable examples of such applications are compact lasers, [8] electro optic modulators, [9] biosensors, [10] [11] polarization control devices, [12] and thermo-optic switches. [13] [14]

Related Research Articles

<span class="mw-page-title-main">Plasmon</span> Quasiparticle of charge oscillations in condensed matter

In physics, a plasmon is a quantum of plasma oscillation. Just as light consists of photons, the plasma oscillation consists of plasmons. The plasmon can be considered as a quasiparticle since it arises from the quantization of plasma oscillations, just like phonons are quantizations of mechanical vibrations. Thus, plasmons are collective oscillations of the free electron gas density. For example, at optical frequencies, plasmons can couple with a photon to create another quasiparticle called a plasmon polariton.

<span class="mw-page-title-main">Photonic crystal</span> Periodic optical nanostructure that affects the motion of photons

A photonic crystal is an optical nanostructure in which the refractive index changes periodically. This affects the propagation of light in the same way that the structure of natural crystals gives rise to X-ray diffraction and that the atomic lattices of semiconductors affect their conductivity of electrons. Photonic crystals occur in nature in the form of structural coloration and animal reflectors, and, as artificially produced, promise to be useful in a range of applications.

An optical waveguide is a physical structure that guides electromagnetic waves in the optical spectrum. Common types of optical waveguides include optical fiber waveguides, transparent dielectric waveguides made of plastic and glass, liquid light guides, and liquid waveguides.

Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology. It often involves dielectric structures such as nanoantennas, or metallic components, which can transport and focus light via surface plasmon polaritons.

<span class="mw-page-title-main">Silicon photonics</span> Photonic systems which use silicon as an optical medium

Silicon photonics is the study and application of photonic systems which use silicon as an optical medium. The silicon is usually patterned with sub-micrometre precision, into microphotonic components. These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems. The silicon typically lies on top of a layer of silica in what is known as silicon on insulator (SOI).

<span class="mw-page-title-main">Surface plasmon</span>

Surface plasmons (SPs) are coherent delocalized electron oscillations that exist at the interface between any two materials where the real part of the dielectric function changes sign across the interface. SPs have lower energy than bulk plasmons which quantise the longitudinal electron oscillations about positive ion cores within the bulk of an electron gas.

A spaser or plasmonic laser is a type of laser which aims to confine light at a subwavelength scale far below Rayleigh's diffraction limit of light, by storing some of the light energy in electron oscillations called surface plasmon polaritons. The phenomenon was first described by David J. Bergman and Mark Stockman in 2003. The word spaser is an acronym for "surface plasmon amplification by stimulated emission of radiation". The first such devices were announced in 2009 by three groups: a 44-nanometer-diameter nanoparticle with a gold core surrounded by a dyed silica gain medium created by researchers from Purdue, Norfolk State and Cornell universities, a nanowire on a silver screen by a Berkeley group, and a semiconductor layer of 90 nm surrounded by silver pumped electrically by groups at the Eindhoven University of Technology and at Arizona State University. While the Purdue-Norfolk State-Cornell team demonstrated the confined plasmonic mode, the Berkeley team and the Eindhoven-Arizona State team demonstrated lasing in the so-called plasmonic gap mode. In 2018, a team from Northwestern University demonstrated a tunable nanolaser that can preserve its high mode quality by exploiting hybrid quadrupole plasmons as an optical feedback mechanism.

<span class="mw-page-title-main">Subwavelength-diameter optical fibre</span>

A subwavelength-diameter optical fibre is an optical fibre whose diameter is less than the wavelength of the light being propagated through it. An SDF usually consists of long thick parts at both ends, transition regions (tapers) where the fibre diameter gradually decreases down to the subwavelength value, and a subwavelength-diameter waist, which is the main acting part. Due to such a strong geometrical confinement, the guided electromagnetic field in an SDF is restricted to a single mode called fundamental.

A nanolaser is a laser that has nanoscale dimensions and it refers to a micro-/nano- device which can emit light with light or electric excitation of nanowires or other nanomaterials that serve as resonators. A standard feature of nanolasers includes their light confinement on a scale approaching or suppressing the diffraction limit of light. These tiny lasers can be modulated quickly and, combined with their small footprint, this makes them ideal candidates for on-chip optical computing.

A plasmonic-enhanced solar cell, commonly referred to simply as plasmonic solar cell, is a type of solar cell that converts light into electricity with the assistance of plasmons, but where the photovoltaic effect occurs in another material.

<span class="mw-page-title-main">Surface plasmon polariton</span> Electromagnetic waves that travel along an interface

Surface plasmon polaritons (SPPs) are electromagnetic waves that travel along a metal–dielectric or metal–air interface, practically in the infrared or visible-frequency. The term "surface plasmon polariton" explains that the wave involves both charge motion in the metal and electromagnetic waves in the air or dielectric ("polariton").

A plasmonic metamaterial is a metamaterial that uses surface plasmons to achieve optical properties not seen in nature. Plasmons are produced from the interaction of light with metal-dielectric materials. Under specific conditions, the incident light couples with the surface plasmons to create self-sustaining, propagating electromagnetic waves known as surface plasmon polaritons (SPPs). Once launched, the SPPs ripple along the metal-dielectric interface. Compared with the incident light, the SPPs can be much shorter in wavelength.

In nano-optics, a plasmonic lens generally refers to a lens for surface plasmon polaritons (SPPs), i.e. a device that redirects SPPs to converge towards a single focal point. Because SPPs can have very small wavelength, they can converge into a very small and very intense spot, much smaller than the free space wavelength and the diffraction limit.

Photonic molecules are a form of matter in which photons bind together to form "molecules". They were first predicted in 2007. Photonic molecules are formed when individual (massless) photons "interact with each other so strongly that they act as though they have mass". In an alternative definition, photons confined to two or more coupled optical cavities also reproduce the physics of interacting atomic energy levels, and have been termed as photonic molecules.

<span class="mw-page-title-main">Plasmonics</span>

Plasmonics or nanoplasmonics refers to the generation, detection, and manipulation of signals at optical frequencies along metal-dielectric interfaces in the nanometer scale. Inspired by photonics, plasmonics follows the trend of miniaturizing optical devices, and finds applications in sensing, microscopy, optical communications, and bio-photonics.

Graphene is a 2D nanosheet with atomic thin thickness in terms of 0.34 nm. Due to the ultrathin thickness, graphene showed many properties that are quite different from their bulk graphite counterparts. The most prominent advantages are known to be their high electron mobility and high mechanical strengths. Thus, it exhibits potential for applications in optics and electronics especially for the development of wearable devices as flexible substrates. More importantly, the optical absorption rate of graphene is 2.3% in the visible and near-infrared region. This broadband absorption characteristic also attracted great attention of the research community to exploit the graphene-based photodetectors/modulators.

<span class="mw-page-title-main">Ravindra Kumar Sinha (physicist)</span> Indian physicist and administrator

Prof. Ravindra Kumar Sinha is the Vice Chancellor of Gautam Buddha University, Greater Noida, Gautam Budh Nagar Under UP Government. He was the director of the CSIR-Central Scientific Instruments Organisation (CSIR-CSIO) Sector-30C, Chandigarh-160 030, India. He has been a Professor - Applied Physics, Dean-Academic [UG] & Chief Coordinator: TIFAC-Center of Relevance and Excellence in Fiber Optics and Optical Communication, Mission REACH Program, Technology Vision-2020, Govt. of India Delhi Technological University Bawana Road, Delhi-110042, India.

<span class="mw-page-title-main">Nanowire lasers</span>

Semiconductor nanowire lasers are nano-scaled lasers that can be embedded on chips and constitute an advance for computing and information processing applications. Nanowire lasers are coherent light sources as any other laser device, with the advantage of operating at the nanoscale. Built by molecular beam epitaxy, nanowire lasers offer the possibility for direct integration on silicon, and the construction of optical interconnects and data communication at the chip scale. Nanowire lasers are built from III–V semiconductor heterostructures. Their unique 1D configuration and high refractive index allow for low optical loss and recirculation in the active nanowire core region. This enables subwavelength laser sizes of only a few hundred nanometers. Nanowires are Fabry–Perot resonator cavities defined by the end facets of the wire, therefore they do not require polishing or cleaving for high-reflectivity facets as in conventional lasers.

Spoof surface plasmons, also known as spoof surface plasmon polaritons and designer surface plasmons, are surface electromagnetic waves in microwave and terahertz regimes that propagate along planar interfaces with sign-changing permittivities. Spoof surface plasmons are a type of surface plasmon polariton, which ordinarily propagate along metal and dielectric interfaces in infrared and visible frequencies. Since surface plasmon polaritons cannot exist naturally in microwave and terahertz frequencies due to dispersion properties of metals, spoof surface plasmons necessitate the use of artificially-engineered metamaterials.

<span class="mw-page-title-main">Giulia Tagliabue</span> Italian mechnical engineer

Giulia Tagliabue is an Italian engineer specialized in nanophotonics. She is a professor at EPFL's School of Engineering, where she leads the Laboratory of Nanoscience for Energy Technologies (LNET).

References

  1. D. K. Gramotnev; S. I. Bozhevolnyi (2010). "Plasmonics beyond the diffraction limit". Nature Photonics. 4 (2): 83–91. Bibcode:2010NaPho...4...83G. doi:10.1038/nphoton.2009.282.
  2. W. L Barnes (2006). "Surface plasmon–polariton length scales: A route to sub-wavelength optics". Journal of Optics A: Pure and Applied Optics. 8 (4): S87. Bibcode:2006JOptA...8S..87B. doi:10.1088/1464-4258/8/4/S06.
  3. M. Z. Alam, J. Meier, J.S. Aitchison, and M. Mojahedi (2007). Super mode propagation in low index medium. Conference on Lasers and Electro-Optics (CLEO).{{cite conference}}: CS1 maint: multiple names: authors list (link)
  4. R. F. Oulton; V. J. Sorger; D. A. Genov; D. F. P. Pile; X. Zhang (2008). "A hybrid plasmonic waveguide for subwavelength confinement and long range propagation". Nature Photonics. 2 (8): 496–500. Bibcode:2008NaPho...2.....O. doi:10.1038/nphoton.2008.131. hdl: 10044/1/19117 .
  5. D. Dai; S. He (2009). "A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement". Opt. Express. 17 (19): 16646–16653. Bibcode:2009OExpr..1716646D. doi: 10.1364/OE.17.016646 . PMID   19770880.
  6. Y. Bian; Z. Zheng; X. Zhao; L. Liu; Y. Su; J. Liu; J. Zhu; T. Zhou (2013). "Nanoscale light guiding in a silicon-based hybrid plasmonic waveguide that incorporates an inverse metal ridge". Phys. Status Solidi A. 210 (7): 1424–1428. Bibcode:2013PSSAR.210.1424B. doi:10.1002/pssa.201228682. S2CID   115148678.
  7. M. Z. Alam; J. S. Aitchison; M. Mojahedi (2014). "A marriage of convenience: Hybridization of plasmonic and dielectric waveguide modes". Laser and Photonics Reviews. 8 (3): 394–408. Bibcode:2014LPRv....8..394A. doi:10.1002/lpor.201300168. S2CID   54036931.
  8. R. F. Oulton; V. J. Sorger; T. Zentgraf; R-M. Ma; C. Gladden; L. Dai; G. Bartal; X. Zhang (2009). "Plasmon lasers at deep subwavelength scale" (PDF). Nature. 461 (7264): 629–632. Bibcode:2009Natur.461..629O. doi:10.1038/nature08364. hdl: 10044/1/19116 . PMID   19718019. S2CID   912028.
  9. V. J. Sorger; N. D. L-Kimura; R-M. Ma; X. Zhang (2012). "Ultra-compact silicon nanophotonic modulator with broadband response". Nanophotonics. 1 (1): 17–22. Bibcode:2012Nanop...1...17S. doi: 10.1515/nanoph-2012-0009 . S2CID   10431638.
  10. L. Zhou; X. Sun; X. Li; J. Chen (2011). "Miniature microring resonator sensor based on a hybrid plasmonic waveguide". Sensors. 11 (7): 6856–6867. Bibcode:2011Senso..11.6856Z. doi: 10.3390/s110706856 . PMC   3231671 . PMID   22163989.
  11. S. Ghosh; B. M. A. Rahman (2019). "Design of on-chip hybrid plasmonic Mach-Zehnder interferometer for temperature and concentration detection of chemical solution". Sensors and Actuators B: Chemical. 279 (7): 490–502. doi:10.1016/j.snb.2018.09.070. PMC   3231671 . PMID   22163989.
  12. J. N. Caspers; J. S. Aitchison; M. Mojahedi (2013). "Experimental demonstration of an integrated hybrid plasmonic polarization rotator". Optics Letters. 38 (20): 4054–4057. Bibcode:2013OptL...38.4054C. doi:10.1364/OL.38.004054. PMID   24321921. S2CID   26909408.
  13. D. Perron; M. Wu; C. Horvath; D. Bachman; V. Van (2011). "All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator". Optics Letters. 36 (14): 2731–2733. Bibcode:2011OptL...36.2731P. doi:10.1364/OL.36.002731. PMID   21765524.
  14. F. Lou; L. Thylen; L. Wosinski (2013). Cheben, Pavel; Čtyroký, Jiří; Molina-Fernandez, Iñigo (eds.). "Hybrid plasmonic microdisk resonators for optical interconnect applications". Proc. SPIE. Integrated Optics: Physics and Simulations. 8781: 87810X. Bibcode:2013SPIE.8781E..0XL. doi:10.1117/12.2017108. S2CID   119802655.