In plasma physics, an electromagnetic electron wave is a wave in a plasma which has a magnetic field component and in which primarily the electrons oscillate.
In an unmagnetized plasma, an electromagnetic electron wave is simply a light wave modified by the plasma. In a magnetized plasma, there are two modes perpendicular to the field, the O and X modes, and two modes parallel to the field, the R and L waves.
The Langmuir wave is a purely longitudinal wave, that is, the wave vector is in the same direction as the E-field. It is an electrostatic wave; as such, it doesn't have an oscillating magnetic field.
A plasma consists of charged particles which react to electric fields, in contrast with dielectric matter. When electrons in a uniform, homogeneous plasma are perturbed from their equilibrium position, a charge separation occurs creating an electric field which acts as restoring force on the electrons. Since electrons have inertia the system behaves as a harmonic oscillator, where the electrons oscillate at a frequency ωpe, called electron plasma frequency. These oscillations do not propagate—the group velocity is 0.
When the thermal motion of the electrons is taken into account a shift in frequency from the electron plasma frequency ωpe occurs. Now the electron pressure gradient acts as the restoring force, creating a propagating wave analogous to a sound wave in non-ionized gases. Combining these two restoring forces (from the electric field and electron pressure gradient) a type of wave, named Langmuir wave, is excited. The dispersion relation is:
The first term on the right-hand side of the dispersion relation is the electron plasma oscillation related to the electric field force and the second term is related to the thermal motion of the electrons, where Ce is the electron thermal speed and k is the wave vector. [1]
In an unmagnetized plasma, waves above the plasma frequency propagate through the plasma according to the dispersion relation:
In an unmagnetized plasma for the high frequency or low electron density limit, i.e. for or where ωpe is the plasma frequency, the wave speed is the speed of light in vacuum. As the electron density increases, the phase velocity increases and the group velocity decreases until the cut-off frequency where the light frequency is equal to ωpe. This density is known as the critical density for the angular frequency ω of that wave and is given by [2]
If the critical density is exceeded, the plasma is called over-dense.
In a magnetized plasma, except for the O wave, the cut-off relationships are more complex.
The O wave is the "ordinary" wave in the sense that its dispersion relation is the same as that in an unmagnetized plasma, that is,
. It is plane polarized with E1 || B0. It has a cut-off at the plasma frequency.
The X wave is the "extraordinary" wave because it has a more complicated dispersion relation: [4]
Where .
It is partly transverse (with E1⊥B0) and partly longitudinal; the E-field is of the form
Where refer to the Stix notation.
As the density is increased, the phase velocity rises from c until the cut-off at is reached. As the density is further increased, the wave is evanescent until the resonance at the upper hybrid frequency . Then it can propagate again until the second cut-off at . The cut-off frequencies are given by [5]
where is the electron cyclotron resonance frequency, and is the electron plasma frequency.
The resonant frequencies for the X-wave are:
where and .
The R wave and the L wave are right-hand and left-hand circularly polarized, respectively. The R wave has a cut-off at ωR (hence the designation of this frequency) and a resonance at ωc. The L wave has a cut-off at ωL and no resonance. R waves at frequencies below ωc/2 are also known as whistler modes. [6]
The dispersion relation can be written as an expression for the frequency (squared), but it is also common to write it as an expression for the index of refraction ck/ω (squared).
Conditions | Dispersion relation | Name |
---|---|---|
Light wave | ||
O wave | ||
X wave | ||
(right circ. pol.) | R wave (whistler mode) | |
(left circ. pol.) | L wave |
In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ε (epsilon), is a measure of the electric polarizability of a dielectric material. A material with high permittivity polarizes more in response to an applied electric field than a material with low permittivity, thereby storing more energy in the material. In electrostatics, the permittivity plays an important role in determining the capacitance of a capacitor.
In the physical sciences, the wavenumber, also known as repetency, is the spatial frequency of a wave, measured in cycles per unit distance or radians per unit distance. It is analogous to temporal frequency, which is defined as the number of wave cycles per unit time or radians per unit time.
In physics, screening is the damping of electric fields caused by the presence of mobile charge carriers. It is an important part of the behavior of charge-carrying fluids, such as ionized gases, electrolytes, and charge carriers in electronic conductors . In a fluid, with a given permittivity ε, composed of electrically charged constituent particles, each pair of particles interact through the Coulomb force as
In condensed matter physics, the density of states (DOS) of a system describes the number of allowed modes or states per unit energy range. The density of states is defined as , where is the number of states in the system of volume whose energies lie in the range from to . It is mathematically represented as a distribution by a probability density function, and it is generally an average over the space and time domains of the various states occupied by the system. The density of states is directly related to the dispersion relations of the properties of the system. High DOS at a specific energy level means that many states are available for occupation.
The Drude model of electrical conduction was proposed in 1900 by Paul Drude to explain the transport properties of electrons in materials. Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the resistance is known as the conductance. When we consider a metal of unit length and unit cross sectional area, the conductance is known as the conductivity, which is the inverse of resistivity. The Drude model attempts to explain the resistivity of a conductor in terms of the scattering of electrons by the relatively immobile ions in the metal that act like obstructions to the flow of electrons.
In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of each sinusoidal component of a wave in the medium, as a function of frequency. In addition to the geometry-dependent and material-dependent dispersion relations, the overarching Kramers–Kronig relations describe the frequency-dependence of wave propagation and attenuation.
Plasma oscillations, also known as Langmuir waves, are rapid oscillations of the electron density in conducting media such as plasmas or metals in the ultraviolet region. The oscillations can be described as an instability in the dielectric function of a free electron gas. The frequency depends only weakly on the wavelength of the oscillation. The quasiparticle resulting from the quantization of these oscillations is the plasmon.
In fluid dynamics, dispersion of water waves generally refers to frequency dispersion, which means that waves of different wavelengths travel at different phase speeds. Water waves, in this context, are waves propagating on the water surface, with gravity and surface tension as the restoring forces. As a result, water with a free surface is generally considered to be a dispersive medium.
In plasma physics, waves in plasmas are an interconnected set of particles and fields which propagate in a periodically repeating fashion. A plasma is a quasineutral, electrically conductive fluid. In the simplest case, it is composed of electrons and a single species of positive ions, but it may also contain multiple ion species including negative ions as well as neutral particles. Due to its electrical conductivity, a plasma couples to electric and magnetic fields. This complex of particles and fields supports a wide variety of wave phenomena.
In plasma physics, an upper hybrid oscillation is a mode of oscillation of a magnetized plasma. It consists of a longitudinal motion of the electrons perpendicular to the magnetic field with the dispersion relation
In plasma physics, an electrostatic ion cyclotron wave is a longitudinal oscillation of the ions in a magnetized plasma, propagating nearly perpendicular to the magnetic field. The angle between the direction of propagation and the direction perpendicular to the magnetic field must be greater than about the square root of the mass ratio,
In physics, magnetosonic waves, also known as magnetoacoustic waves, are low-frequency compressive waves driven by mutual interaction between an electrically conducting fluid and a magnetic field. They are associated with compression and rarefaction of both the fluid and the magnetic field, as well as with an effective tension that acts to straighten bent magnetic field lines. The properties of magnetosonic waves are highly dependent on the angle between the wavevector and the equilibrium magnetic field and on the relative importance of fluid and magnetic processes in the medium. They only propagate with frequencies much smaller than the ion cyclotron or ion plasma frequencies of the medium, and they are nondispersive at small amplitudes.
The two-stream instability is a very common instability in plasma physics. It can be induced by an energetic particle stream injected in a plasma, or setting a current along the plasma so different species can have different drift velocities. The energy from the particles can lead to plasma wave excitation.
Plasma parameters define various characteristics of a plasma, an electrically conductive collection of charged and neutral particles of various species that responds collectively to electromagnetic forces. Such particle systems can be studied statistically, i.e., their behaviour can be described based on a limited number of global parameters instead of tracking each particle separately.
The Appleton–Hartree equation, sometimes also referred to as the Appleton–Lassen equation is a mathematical expression that describes the refractive index for electromagnetic wave propagation in a cold magnetized plasma. The Appleton–Hartree equation was developed independently by several different scientists, including Edward Victor Appleton, Douglas Hartree and German radio physicist H. K. Lassen. Lassen's work, completed two years prior to Appleton and five years prior to Hartree, included a more thorough treatment of collisional plasma; but, published only in German, it has not been widely read in the English speaking world of radio physics. Further, regarding the derivation by Appleton, it was noted in the historical study by Gillmor that Wilhelm Altar first calculated the dispersion relation in 1926.
The Weibel instability is a plasma instability present in homogeneous or nearly homogeneous electromagnetic plasmas which possess an anisotropy in momentum (velocity) space. This anisotropy is most generally understood as two temperatures in different directions. Burton Fried showed that this instability can be understood more simply as the superposition of many counter-streaming beams. In this sense, it is like the two-stream instability except that the perturbations are electromagnetic and result in filamentation as opposed to electrostatic perturbations which would result in charge bunching. In the linear limit the instability causes exponential growth of electromagnetic fields in the plasma which help restore momentum space isotropy. In very extreme cases, the Weibel instability is related to one- or two-dimensional stream instabilities.
Static force fields are fields, such as a simple electric, magnetic or gravitational fields, that exist without excitations. The most common approximation method that physicists use for scattering calculations can be interpreted as static forces arising from the interactions between two bodies mediated by virtual particles, particles that exist for only a short time determined by the uncertainty principle. The virtual particles, also known as force carriers, are bosons, with different bosons associated with each force.
Surface plasmon polaritons (SPPs) are electromagnetic waves that travel along a metal–dielectric or metal–air interface, practically in the infrared or visible-frequency. The term "surface plasmon polariton" explains that the wave involves both charge motion in the metal and electromagnetic waves in the air or dielectric ("polariton").
The Farley–Buneman instability, or FB instability, is a microscopic plasma instability named after Donald T. Farley and Oscar Buneman. It is similar to the ionospheric Rayleigh-Taylor instability.
Shneider-Miles scattering is the quasi-elastic scattering of electromagnetic radiation by charged particles in a small-scale medium with frequent particle collisions. Collisional scattering typically occurs in coherent microwave scattering of high neutral density, low ionization degree microplasmas such as atmospheric pressure laser-induced plasmas. Shneider-Miles scattering is characterized by a 90° phase shift between the incident and scattered waves and a scattering cross section proportional to the square of the incident driving frequency. Scattered waves are emitted in a short dipole radiation pattern. The variable phase shift present in semi-collisional scattering regimes allows for determination of a plasma's collisional frequency through coherent microwave scattering.
{{cite book}}
: CS1 maint: location missing publisher (link)