Ion acoustic wave

Last updated

In plasma physics, an ion acoustic wave is one type of longitudinal oscillation of the ions and electrons in a plasma, much like acoustic waves traveling in neutral gas. However, because the waves propagate through positively charged ions, ion acoustic waves can interact with their electromagnetic fields, as well as simple collisions. In plasmas, ion acoustic waves are frequently referred to as acoustic waves or even just sound waves. They commonly govern the evolution of mass density, for instance due to pressure gradients, on time scales longer than the frequency corresponding to the relevant length scale. Ion acoustic waves can occur in an unmagnetized plasma or in a magnetized plasma parallel to the magnetic field. For a single ion species plasma and in the long wavelength limit, the waves are dispersionless () with a speed given by (see derivation below)

Contents

where is the Boltzmann constant, is the mass of the ion, is its charge, is the temperature of the electrons and is the temperature of the ions. Normally γe is taken to be unity, on the grounds that the thermal conductivity of electrons is large enough to keep them isothermal on the time scale of ion acoustic waves, and γi is taken to be 3, corresponding to one-dimensional motion. In collisionless plasmas, the electrons are often much hotter than the ions, in which case the second term in the numerator can be ignored.

Derivation

We derive the ion acoustic wave dispersion relation for a linearized fluid description of a plasma with electrons and ion species. We write each quantity as where subscript 0 denotes the "zero-order" constant equilibrium value, and 1 denotes the first-order perturbation. is an ordering parameter for linearization, and has the physical value 1. To linearize, we balance all terms in each equation of the same order in . The terms involving only subscript-0 quantities are all order and must balance, and terms with one subscript-1 quantity are all order and balance. We treat the electric field as order-1 () and neglect magnetic fields,

Each species is described by mass , charge , number density , flow velocity , and pressure . We assume the pressure perturbations for each species are a Polytropic process, namely for species . To justify this assumption and determine the value of , one must use a kinetic treatment that solves for the species distribution functions in velocity space. The polytropic assumption essentially replaces the energy equation.

Each species satisfies the continuity equation

and the momentum equation

.

We now linearize, and work with order-1 equations. Since we do not work with due to the polytropic assumption (but we do not assume it is zero), to alleviate notation we use for . Using the ion continuity equation, the ion momentum equation becomes

We relate the electric field to the electron density by the electron momentum equation:

We now neglect the left-hand side, which is due to electron inertia. This is valid for waves with frequencies much less than the electron plasma frequency . This is a good approximation for , such as ionized matter, but not for situations like electron-hole plasmas in semiconductors, or electron-positron plasmas. The resulting electric field is

Since we have already solved for the electric field, we cannot also find it from Poisson's equation. The ion momentum equation now relates for each species to :

We arrive at a dispersion relation via Poisson's equation:

The first bracketed term on the right is zero by assumption (charge-neutral equilibrium). We substitute for the electric field and rearrange to find

.

defines the electron Debye length. The second term on the left arises from the term, and reflects the degree to which the perturbation is not charge-neutral. If is small we may drop this term. This approximation is sometimes called the plasma approximation.

We now work in Fourier space, and write each order-1 field as We drop the tilde since all equations now apply to the Fourier amplitudes, and find

is the wave phase velocity. Substituting this into Poisson's equation gives us an expression where each term is proportional to . To find the dispersion relation for natural modes, we look for solutions for nonzero and find:

.

 

 

 

 

(dispgen)

where , so the ion fractions satisfy , and is the average over ion species. A unitless version of this equation is

with , is the atomic mass unit, , and

If is small (the plasma approximation), we can neglect the second term on the right-hand side, and the wave is dispersionless with independent of k.

Dispersion relation

The general dispersion relation given above for ion acoustic waves can be put in the form of an order-N polynomial (for N ion species) in . All of the roots should be real-positive, since we have neglected damping. The two signs of correspond to right- and left-moving waves. For a single ion species,

We now consider multiple ion species, for the common case . For , the dispersion relation has N-1 degenerate roots , and one non-zero root

This non-zero root is called the "fast mode", since is typically greater than all the ion thermal speeds. The approximate fast-mode solution for is

The N-1 roots that are zero for are called "slow modes", since can be comparable to or less than the thermal speed of one or more of the ion species.

A case of interest to nuclear fusion is an equimolar mixture of deuterium and tritium ions (). Let us specialize to full ionization (), equal temperatures (), polytrope exponents , and neglect the contribution. The dispersion relation becomes a quadratic in , namely:

Using we find the two roots are .

Another case of interest is one with two ion species of very different masses. An example is a mixture of gold (A=197) and boron (A=10.8), which is currently of interest in hohlraums for laser-driven inertial fusion research. For a concrete example, consider and for both ion species, and charge states Z=5 for boron and Z=50 for gold. We leave the boron atomic fraction unspecified (note ). Thus, and .

Damping

Ion acoustic waves are damped both by Coulomb collisions and collisionless Landau damping. The Landau damping occurs on both electrons and ions, with the relative importance depending on parameters.

See also

Related Research Articles

In vector calculus and differential geometry the generalized Stokes theorem, also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or and the divergence theorem is the case of a volume in Hence, the theorem is sometimes referred to as the Fundamental Theorem of Multivariate Calculus.

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-12 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way.

A Langmuir probe is a device used to determine the electron temperature, electron density, and electric potential of a plasma. It works by inserting one or more electrodes into a plasma, with a constant or time-varying electric potential between the various electrodes or between them and the surrounding vessel. The measured currents and potentials in this system allow the determination of the physical properties of the plasma.

In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best-known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and electrons in a molecule can be treated separately, based on the fact that the nuclei are much heavier than the electrons. Due to the larger relative mass of a nucleus compared to an electron, the coordinates of the nuclei in a system are approximated as fixed, while the coordinates of the electrons are dynamic. The approach is named after Max Born and his 23-year-old graduate student J. Robert Oppenheimer, the latter of whom proposed it in 1927 during a period of intense ferment in the development of quantum mechanics.

<span class="mw-page-title-main">Green's function</span> Impulse response of an inhomogeneous linear differential operator

In mathematics, a Green's function is the impulse response of an inhomogeneous linear differential operator defined on a domain with specified initial conditions or boundary conditions.

In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a differential operator, to be contrasted with the approach given by a principal connection on the frame bundle – see affine connection. In the special case of a manifold isometrically embedded into a higher-dimensional Euclidean space, the covariant derivative can be viewed as the orthogonal projection of the Euclidean directional derivative onto the manifold's tangent space. In this case the Euclidean derivative is broken into two parts, the extrinsic normal component and the intrinsic covariant derivative component.

In physics, a wave vector is a vector used in describing a wave, with a typical unit being cycle per metre. It has a magnitude and direction. Its magnitude is the wavenumber of the wave, and its direction is perpendicular to the wavefront. In isotropic media, this is also the direction of wave propagation.

In mathematics and quantum mechanics, a Dirac operator is a differential operator that is a formal square root, or half-iterate, of a second-order operator such as a Laplacian. The original case which concerned Paul Dirac was to factorise formally an operator for Minkowski space, to get a form of quantum theory compatible with special relativity; to get the relevant Laplacian as a product of first-order operators he introduced spinors. It was first published in 1928 by Dirac.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

In quantum physics, the spin–orbit interaction is a relativistic interaction of a particle's spin with its motion inside a potential. A key example of this phenomenon is the spin–orbit interaction leading to shifts in an electron's atomic energy levels, due to electromagnetic interaction between the electron's magnetic dipole, its orbital motion, and the electrostatic field of the positively charged nucleus. This phenomenon is detectable as a splitting of spectral lines, which can be thought of as a Zeeman effect product of two relativistic effects: the apparent magnetic field seen from the electron perspective and the magnetic moment of the electron associated with its intrinsic spin. A similar effect, due to the relationship between angular momentum and the strong nuclear force, occurs for protons and neutrons moving inside the nucleus, leading to a shift in their energy levels in the nucleus shell model. In the field of spintronics, spin–orbit effects for electrons in semiconductors and other materials are explored for technological applications. The spin–orbit interaction is at the origin of magnetocrystalline anisotropy and the spin Hall effect.

The two-stream instability is a very common instability in plasma physics. It can be induced by an energetic particle stream injected in a plasma, or setting a current along the plasma so different species can have different drift velocities. The energy from the particles can lead to plasma wave excitation.

In physics, Larmor precession is the precession of the magnetic moment of an object about an external magnetic field. The phenomenon is conceptually similar to the precession of a tilted classical gyroscope in an external torque-exerting gravitational field. Objects with a magnetic moment also have angular momentum and effective internal electric current proportional to their angular momentum; these include electrons, protons, other fermions, many atomic and nuclear systems, as well as classical macroscopic systems. The external magnetic field exerts a torque on the magnetic moment,

In physics, the Einstein relation is a previously unexpected connection revealed independently by William Sutherland in 1904, Albert Einstein in 1905, and by Marian Smoluchowski in 1906 in their works on Brownian motion. The more general form of the equation in the classical case is

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

<span class="mw-page-title-main">Mathematical descriptions of the electromagnetic field</span> Formulations of electromagnetism

There are various mathematical descriptions of the electromagnetic field that are used in the study of electromagnetism, one of the four fundamental interactions of nature. In this article, several approaches are discussed, although the equations are in terms of electric and magnetic fields, potentials, and charges with currents, generally speaking.

In mathematical physics, spacetime algebra (STA) is a name for the Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4). According to David Hestenes, spacetime algebra can be particularly closely associated with the geometry of special relativity and relativistic spacetime.

The Weibel instability is a plasma instability present in homogeneous or nearly homogeneous electromagnetic plasmas which possess an anisotropy in momentum (velocity) space. This anisotropy is most generally understood as two temperatures in different directions. Burton Fried showed that this instability can be understood more simply as the superposition of many counter-streaming beams. In this sense, it is like the two-stream instability except that the perturbations are electromagnetic and result in filamentation as opposed to electrostatic perturbations which would result in charge bunching. In the linear limit the instability causes exponential growth of electromagnetic fields in the plasma which help restore momentum space isotropy. In very extreme cases, the Weibel instability is related to one- or two-dimensional stream instabilities.

An electric dipole transition is the dominant effect of an interaction of an electron in an atom with the electromagnetic field.

The Farley–Buneman instability, or FB instability, is a microscopic plasma instability named after Donald T. Farley and Oscar Buneman. It is similar to the ionospheric Rayleigh-Taylor instability.

In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.