Spin density wave

Last updated

Spin-density wave (SDW) and charge-density wave (CDW) are names for two similar low-energy ordered states of solids. Both these states occur at low temperature in anisotropic, low-dimensional materials or in metals that have high densities of states at the Fermi level . Other low-temperature ground states that occur in such materials are superconductivity, ferromagnetism and antiferromagnetism. The transition to the ordered states is driven by the condensation energy which is approximately where is the magnitude of the energy gap opened by the transition.

Contents

Fundamentally SDWs and CDWs involve the development of a superstructure in the form of a periodic modulation in the density of the electronic spins and charges with a characteristic spatial frequency that does not transform according to the symmetry group that describes the ionic positions. The new periodicity associated with CDWs can easily be observed using scanning tunneling microscopy or electron diffraction while the more elusive SDWs are typically observed via neutron diffraction or susceptibility measurements. If the new periodicity is a rational fraction or multiple of the lattice constant, the density wave is said to be commensurate; otherwise the density wave is termed incommensurate.

A sketch in k-space of a (001) section of the Fermi surface of Cr. The band structure of Cr yields an electron pocket (green) centered at Gamma and a hole pocket (blue) centered at H. The surrounding black square indicates the boundary of the first Brillouin zone. Crnest.png
A sketch in k-space of a (001) section of the Fermi surface of Cr. The band structure of Cr yields an electron pocket (green) centered at Gamma and a hole pocket (blue) centered at H. The surrounding black square indicates the boundary of the first Brillouin zone.

Some solids with a high form density waves while others choose a superconducting or magnetic ground state at low temperatures, because of the existence of nesting vectors in the materials' Fermi surfaces. The concept of a nesting vector is illustrated in the Figure for the famous case of chromium, which transitions from a paramagnetic to SDW state at a Néel temperature of 311 K. Cr is a body-centered cubic metal whose Fermi surface features many parallel boundaries between electron pockets centered at and hole pockets at H. These large parallel regions can be spanned by the nesting wavevector shown in red. The real-space periodicity of the resulting spin-density wave is given by . The formation of an SDW with a corresponding spatial frequency causes the opening of an energy gap that lowers the system's energy. The existence of the SDW in Cr was first posited in 1960 by Albert Overhauser of Purdue. The theory of CDWs was first put forth by Rudolf Peierls of Oxford University, who was trying to explain superconductivity.

Many low-dimensional solids have anisotropic Fermi surfaces that have prominent nesting vectors. Well-known examples include layered materials like NbSe3, [1] TaSe2 [2] and K0.3MoO3 (a Chevrel phase) [3] and quasi-1D organic conductors like TMTSF or TTF-TCNQ. [4] CDWs are also common at the surface of solids where they are more commonly called surface reconstructions or even dimerization. Surfaces so often support CDWs because they can be described by two-dimensional Fermi surfaces like those of layered materials. Chains of Au and In on semiconducting substrates have been shown to exhibit CDWs. [5] More recently, monatomic chains of Co on a metallic substrate were experimentally shown to exhibit a CDW instability and was attributed to ferromagnetic correlations. [6]

The most intriguing properties of density waves are their dynamics. Under an appropriate electric field or magnetic field, a density wave will "slide" in the direction indicated by the field due to the electrostatic or magnetostatic force. Typically the sliding will not begin until a "depinning" threshold field is exceeded where the wave can escape from a potential well caused by a defect. The hysteretic motion of density waves is therefore not unlike that of dislocations or magnetic domains. The current-voltage curve of a CDW solid therefore shows a very high electrical resistance up to the depinning voltage, above which it shows a nearly ohmic behavior. Under the depinning voltage (which depends on the purity of the material), the crystal is an insulator.

See also

Related Research Articles

<span class="mw-page-title-main">BCS theory</span> Microscopic theory of superconductivity

BCS theory or Bardeen–Cooper–Schrieffer theory is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes superconductivity as a microscopic effect caused by a condensation of Cooper pairs. The theory is also used in nuclear physics to describe the pairing interaction between nucleons in an atomic nucleus.

<span class="mw-page-title-main">High-temperature superconductivity</span> Superconductive behavior at temperatures much higher than absolute zero

High-temperature superconductors are defined as materials that behave as superconductors at temperatures above 77 K, the boiling point of liquid nitrogen. The adjective "high temperature" is only in respect to previously known superconductors, which function at even colder temperatures close to absolute zero. In absolute terms, these "high temperatures" are still far below ambient, and therefore require cooling. The first high-temperature superconductor was discovered in 1986, by IBM researchers Bednorz and Müller, who were awarded the Nobel Prize in Physics in 1987 "for their important break-through in the discovery of superconductivity in ceramic materials". Most high-Tc materials are type-II superconductors.

<span class="mw-page-title-main">Fermi liquid theory</span> Theoretical model of interacting fermions

Fermi liquid theory is a theoretical model of interacting fermions that describes the normal state of most metals at sufficiently low temperatures. The interactions among the particles of the many-body system do not need to be small. The phenomenological theory of Fermi liquids was introduced by the Soviet physicist Lev Davidovich Landau in 1956, and later developed by Alexei Abrikosov and Isaak Khalatnikov using diagrammatic perturbation theory. The theory explains why some of the properties of an interacting fermion system are very similar to those of the ideal Fermi gas, and why other properties differ.

<span class="mw-page-title-main">Aharonov–Bohm effect</span> Electromagnetic quantum-mechanical effect in regions of zero magnetic and electric field

The Aharonov–Bohm effect, sometimes called the Ehrenberg–Siday–Aharonov–Bohm effect, is a quantum mechanical phenomenon in which an electrically charged particle is affected by an electromagnetic potential, despite being confined to a region in which both the magnetic field B and electric field E are zero. The underlying mechanism is the coupling of the electromagnetic potential with the complex phase of a charged particle's wave function, and the Aharonov–Bohm effect is accordingly illustrated by interference experiments.

<span class="mw-page-title-main">Magnon</span> Spin 1 quasiparticle; quantum of a spin wave

A magnon is a quasiparticle, a collective excitation of the spin structure of an electron in a crystal lattice. In the equivalent wave picture of quantum mechanics, a magnon can be viewed as a quantized spin wave. Magnons carry a fixed amount of energy and lattice momentum, and are spin-1, indicating they obey boson behavior.

Jellium, also known as the uniform electron gas (UEG) or homogeneous electron gas (HEG), is a quantum mechanical model of interacting electrons in a solid where the positive charges are assumed to be uniformly distributed in space; the electron density is a uniform quantity as well in space. This model allows one to focus on the effects in solids that occur due to the quantum nature of electrons and their mutual repulsive interactions without explicit introduction of the atomic lattice and structure making up a real material. Jellium is often used in solid-state physics as a simple model of delocalized electrons in a metal, where it can qualitatively reproduce features of real metals such as screening, plasmons, Wigner crystallization and Friedel oscillations.

<span class="mw-page-title-main">Pseudopotential</span>

In physics, a pseudopotential or effective potential is used as an approximation for the simplified description of complex systems. Applications include atomic physics and neutron scattering. The pseudopotential approximation was first introduced by Hans Hellmann in 1934.

<span class="mw-page-title-main">Mott insulator</span> Materials classically predicted to be conductors, that are actually insulators

Mott insulators are a class of materials that are expected to conduct electricity according to conventional band theories, but turn out to be insulators. These insulators fail to be correctly described by band theories of solids due to their strong electron–electron interactions, which are not considered in conventional band theory. A Mott transition is a transition from a metal to an insulator, driven by the strong interactions between electrons. One of the simplest models that can capture Mott transition is the Hubbard model.

<span class="mw-page-title-main">Quantum point contact</span>

A quantum point contact (QPC) is a narrow constriction between two wide electrically conducting regions, of a width comparable to the electronic wavelength.

Metal–insulator transitions are transitions of a material from a metal to an insulator. These transitions can be achieved by tuning various ambient parameters such as temperature, pressure or, in case of a semiconductor, doping.

A charge density wave (CDW) is an ordered quantum fluid of electrons in a linear chain compound or layered crystal. The electrons within a CDW form a standing wave pattern and sometimes collectively carry an electric current. The electrons in such a CDW, like those in a superconductor, can flow through a linear chain compound en masse, in a highly correlated fashion. Unlike a superconductor, however, the electric CDW current often flows in a jerky fashion, much like water dripping from a faucet due to its electrostatic properties. In a CDW, the combined effects of pinning and electrostatic interactions likely play critical roles in the CDW current's jerky behavior, as discussed in sections 4 & 5 below.

In the field of physics concerning condensed matter, a Kohn anomaly is an anomaly in the dispersion relation of a phonon branch in a metal. It is named for Walter Kohn. For a specific wavevector, the frequency of the associated phonon is considerably lowered, and there is a discontinuity in its derivative. They have been first proposed by Walter Kohn in 1959. In extreme cases, the energy of this phonon is zero, meaning that a static distortion of the lattice appears. This is one explanation for charge density waves in solids. The wavevectors at which a Kohn anomaly is possible are the nesting vectors of the Fermi surface, that is vectors that connect a lot of points of the Fermi surface. The electron phonon interaction causes a rigid shift of the Fermi sphere and a failure of the Born-Oppenheimer approximation since the electrons do not follow any more the ionic motion adiabatically.

In solid-state physics, heavy fermion materials are a specific type of intermetallic compound, containing elements with 4f or 5f electrons in unfilled electron bands. Electrons are one type of fermion, and when they are found in such materials, they are sometimes referred to as heavy electrons. Heavy fermion materials have a low-temperature specific heat whose linear term is up to 1000 times larger than the value expected from the free electron model. The properties of the heavy fermion compounds often derive from the partly filled f-orbitals of rare-earth or actinide ions, which behave like localized magnetic moments. The name "heavy fermion" comes from the fact that the fermion behaves as if it has an effective mass greater than its rest mass. In the case of electrons, below a characteristic temperature (typically 10 K), the conduction electrons in these metallic compounds behave as if they had an effective mass up to 1000 times the free particle mass. This large effective mass is also reflected in a large contribution to the resistivity from electron-electron scattering via the Kadowaki–Woods ratio. Heavy fermion behavior has been found in a broad variety of states including metallic, superconducting, insulating and magnetic states. Characteristic examples are CeCu6, CeAl3, CeCu2Si2, YbAl3, UBe13 and UPt3.

The slave boson method is a technique for dealing with models of strongly correlated systems, providing a method to second-quantize valence fluctuations within a restrictive manifold of states. In the 1960s the physicist John Hubbard introduced an operator, now named the "Hubbard operator" to describe the creation of an electron within a restrictive manifold of valence configurations. Consider for example, a rare earth or actinide ion in which strong Coulomb interactions restrict the charge fluctuations to two valence states, such as the Ce4+(4f0) and Ce3+ (4f1) configurations of a mixed-valence cerium compound. The corresponding quantum states of these two states are the singlet state and the magnetic state, where is the spin. The fermionic Hubbard operators that link these states are then

A Peierls transition or Peierls distortion is a distortion of the periodic lattice of a one-dimensional crystal. Atomic positions oscillate, so that the perfect order of the 1-D crystal is broken.

<span class="mw-page-title-main">Subir Sachdev</span> Indian physicist

Subir Sachdev is Herchel Smith Professor of Physics at Harvard University specializing in condensed matter. He was elected to the U.S. National Academy of Sciences in 2014, and received the Lars Onsager Prize from the American Physical Society and the Dirac Medal from the ICTP in 2018. He was a co-editor of the Annual Review of Condensed Matter Physics from 2017-2019.

<span class="mw-page-title-main">Piers Coleman</span> British-American physicist

Piers Coleman is a British-born theoretical physicist, working in the field of theoretical condensed matter physics. Coleman is Professor of Physics at Rutgers University in New Jersey and at Royal Holloway, University of London.

The Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase can arise in a superconductor in large magnetic field. Among its characteristics are Cooper pairs with nonzero total momentum and a spatially non-uniform order parameter, leading to normal conducting areas in the superconductor.

<span class="mw-page-title-main">Niobium triselenide</span> Chemical compound

Niobium triselenide is an inorganic compound belonging to the class of transition metal trichalcogenides. It has the formula NbSe3. It was the first reported example of one-dimensional compound to exhibit the phenomenon of sliding charge density waves. Due to its many studies and exhibited phenomena in quantum mechanics, niobium triselenide has become the model system for quasi-1-D charge density waves.

<span class="mw-page-title-main">Thomas Maurice Rice</span>

Thomas Maurice Rice is an Irish theoretical physicist specializing in condensed matter physics.

References

  1. Grüner, G. (1 September 1988). "The dynamics of charge-density waves". Reviews of Modern Physics. American Physical Society (APS). 60 (4): 1129–1181. Bibcode:1988RvMP...60.1129G. doi:10.1103/revmodphys.60.1129. ISSN   0034-6861.
  2. Mutka, H.; Zuppiroli, L.; Molinié, P.; Bourgoin, J. C. (15 May 1981). "Charge-density waves and localization in electron-irradiated 1T−TaS2". Physical Review B. American Physical Society (APS). 23 (10): 5030–5037. Bibcode:1981PhRvB..23.5030M. doi:10.1103/physrevb.23.5030. ISSN   0163-1829.
  3. Pouget, J. P.; Hennion, B.; Escribe-Filippini, C.; Sato, M. (1 March 1991). "Neutron-scattering investigations of the Kohn anomaly and of the phase and amplitude charge-density-wave excitations of the blue bronze K0.3MoO3". Physical Review B. American Physical Society (APS). 43 (10): 8421–8430. Bibcode:1991PhRvB..43.8421P. doi:10.1103/physrevb.43.8421. ISSN   0163-1829. PMID   9996473.
  4. Patton, Bruce R.; Sham, L. J. (3 September 1973). "Conductivity, Superconductivity, and the Peierls Instability". Physical Review Letters. American Physical Society (APS). 31 (10): 631–634. Bibcode:1973PhRvL..31..631P. doi:10.1103/physrevlett.31.631. ISSN   0031-9007.
  5. Snijders, P. C.; Weitering, H. H. (2010). "Electronic instabilities in self-assembled atom wires". Rev. Mod. Phys. 82 (1): 307–329. Bibcode:2010RvMP...82..307S. doi:10.1103/RevModPhys.82.307.
  6. Zaki, Nader; et al. (2013). "Experimental observation of spin-exchange-induced dimerization of an atomic one-dimensional system". Phys. Rev. B. 87 (16): 161406(R). arXiv: 1208.0612 . Bibcode:2013PhRvB..87p1406Z. doi:10.1103/PhysRevB.87.161406. S2CID   118474115.

General References

  1. A pedagogical article about the topic: "Charge and Spin Density Waves," Stuart Brown and George Gruner, Scientific American 270, 50 (1994).
  2. Authoritative work on Cr: Fawcett, Eric (1988-01-01). "Spin-density-wave antiferromagnetism in chromium". Reviews of Modern Physics. American Physical Society (APS). 60 (1): 209–283. Bibcode:1988RvMP...60..209F. doi:10.1103/revmodphys.60.209. ISSN   0034-6861.
  3. About Fermi surfaces and nesting: Electronic Structure and the Properties of Solids, Walter A. Harrison, ISBN   0-486-66021-4.
  4. Observation of CDW by ARPES: Borisenko, S. V.; Kordyuk, A. A.; Yaresko, A. N.; Zabolotnyy, V. B.; Inosov, D. S.; et al. (2008-05-13). "Pseudogap and Charge Density Waves in Two Dimensions". Physical Review Letters. 100 (19): 196402. arXiv: 0704.1544 . Bibcode:2008PhRvL.100s6402B. doi:10.1103/physrevlett.100.196402. ISSN   0031-9007. PMID   18518466. S2CID   5532038.
  5. Peierls instability.
  6. An extensive review of experiments as of 2013 by Pierre Monceau. Monceau, Pierre (2012). "Electronic crystals: an experimental overview". Advances in Physics. Informa UK Limited. 61 (4): 325–581. arXiv: 1307.0929 . Bibcode:2012AdPhy..61..325M. doi:10.1080/00018732.2012.719674. ISSN   0001-8732. S2CID   119271518.