Pulse (physics)

Last updated

In physics, a pulse is a generic term describing a single disturbance that moves through a transmission medium. This medium may be vacuum (in the case of electromagnetic radiation) or matter, and may be indefinitely large or finite.

Contents

Pulse reflection

Consider a pulse moving through a medium - perhaps through a rope or a slinky. When the pulse reaches the end of that medium, what happens to it depends on whether the medium is fixed in space or free to move at its end. For example, if the pulse is moving through a rope and the end of the rope is held firmly by a person, then it is said that the pulse is approaching a fixed end. On the other hand, if the end of the rope is fixed to a stick such that it is free to move up or down along the stick when the pulse reaches its end, then it is said that the pulse is approaching a free end.

Free end

Figure 1: A pulse reaching the end of the medium, the end point is free. The successive positions of the pulse is drawn black, red, green, blue, black, red, green. The final green curve is the initial curve of figure 2. Pulse reflection free end 1.svg
Figure 1: A pulse reaching the end of the medium, the end point is free. The successive positions of the pulse is drawn black, red, green, blue, black, red, green. The final green curve is the initial curve of figure 2.
Figure 2: The reflection of the pulse. The successive positions of the pulse is drawn green, blue, black, red, green, blue. The initial green curve is the final curve of figure 1 Pulse reflection free end 2.svg
Figure 2: The reflection of the pulse. The successive positions of the pulse is drawn green, blue, black, red, green, blue. The initial green curve is the final curve of figure 1

A pulse will reflect off a free end and return with the same direction of displacement that it had before reflection. That is, a pulse with an upward displacement will reflect off the end and return with an upward displacement.

This is illustrated by figures 1 and 2 that were obtained by the numerical integration of the wave equation.

Fixed end

Figure 3: A pulse reaching the end of the medium, the end point is fixed. The successive positions of the pulse is drawn black, red, green, blue, black, red, green. The final green curve is the initial curve of figure 4. Pulse reflection fixed end 1.svg
Figure 3: A pulse reaching the end of the medium, the end point is fixed. The successive positions of the pulse is drawn black, red, green, blue, black, red, green. The final green curve is the initial curve of figure 4.
Figure 4: The reflection of the pulse. The successive positions of the pulse is drawn green, blue, black, red, green, blue. The initial green curve is the final curve of figure 3 Pulse reflection fixed end 2.svg
Figure 4: The reflection of the pulse. The successive positions of the pulse is drawn green, blue, black, red, green, blue. The initial green curve is the final curve of figure 3
Figure 5: Animation corresponding to figures 3 and 4. Wave equation 1D fixed endpoints.gif
Figure 5: Animation corresponding to figures 3 and 4.

A pulse will reflect off a fixed end and return with the opposite direction of displacement. In this case, the pulse is said to have inverted. That is, a pulse with an upward displacement will reflect off the end and return with a downward displacement.

This is illustrated by figures 3 and 4 that were obtained by the numerical integration of the wave equation. In addition it is illustrated in the animation of figure 5.

Crossing media

When there exists a pulse in a medium that is connected to another less heavy or less dense medium, the pulse will reflect as if it were approaching a free end (no inversion). Contrarily, when a pulse is traveling through a medium connected to a heavier or denser medium, the pulse will reflect as if it were approaching a fixed end (inversion).

Optical pulse

Dark pulse

Dark pulses [1] are characterized by being formed from a localized reduction of intensity compared to a more intense continuous wave background. Scalar dark solitons (linearly polarized dark solitons) can be formed in all normal dispersion fiber lasers mode-locked by the nonlinear polarization rotation method and can be rather stable. Vector dark solitons [2] [3] are much less stable due to the cross-interaction between the two polarization components. Therefore, it is interesting to investigate how the polarization state of these two polarization components evolves.

In 2008, the first dark pulse laser was reported in a quantum dot diode laser with a saturable absorber. [4]

In 2009, the dark pulse fiber laser was successfully achieved in an all-normal dispersion erbium-doped fiber laser with a polarizer in cavity. Experimentation has revealed that apart from the bright pulse emission, under appropriate conditions the fiber laser could also emit single or multiple dark pulses. Based on numerical simulations, the dark pulse formation in the laser is a result of dark soliton shaping. [5]

In 2022, the first free space dark pulse laser using a nonlinear crystal inside of a solid state laser demonstrated. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Nonlinear optics</span> Branch of physics

Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds.

<span class="mw-page-title-main">Soliton</span> Self-reinforcing single wave packet

In mathematics and physics, a soliton or solitary wave is a self-reinforcing wave packet that maintains its shape while it propagates at a constant velocity. Solitons are caused by a cancellation of nonlinear and dispersive effects in the medium. Solitons are the solutions of a widespread class of weakly nonlinear dispersive partial differential equations describing physical systems.

Mode locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). A laser operated in this way is sometimes referred to as a femtosecond laser, for example, in modern refractive surgery. The basis of the technique is to induce a fixed phase relationship between the longitudinal modes of the laser's resonant cavity. Constructive interference between these modes can cause the laser light to be produced as a train of pulses. The laser is then said to be "phase-locked" or "mode-locked".

<span class="mw-page-title-main">Ti-sapphire laser</span>

Ti:sapphire lasers (also known as Ti:Al2O3 lasers, titanium-sapphire lasers, or Ti:sapphs) are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers. These lasers are mainly used in scientific research because of their tunability and their ability to generate ultrashort pulses. Lasers based on Ti:sapphire were first constructed and invented in June 1982 by Peter Moulton at the MIT Lincoln Laboratory.

<span class="mw-page-title-main">Solid-state laser</span> Laser which uses a solid gain medium

A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers, called laser diodes.

<span class="mw-page-title-main">Double-clad fiber</span>

Double-clad fiber (DCF) is a class of optical fiber with a structure consisting of three layers of optical material instead of the usual two. The inner-most layer is called the core. It is surrounded by the inner cladding, which is surrounded by the outer cladding. The three layers are made of materials with different refractive indices.

A fiber laser is a laser in which the active gain medium is an optical fiber doped with rare-earth elements such as erbium, ytterbium, neodymium, dysprosium, praseodymium, thulium and holmium. They are related to doped fiber amplifiers, which provide light amplification without lasing. Fiber nonlinearities, such as stimulated Raman scattering or four-wave mixing can also provide gain and thus serve as gain media for a fiber laser.

<span class="mw-page-title-main">Supercontinuum</span>

In optics, a supercontinuum is formed when a collection of nonlinear processes act together upon a pump beam in order to cause severe spectral broadening of the original pump beam, for example using a microstructured optical fiber. The result is a smooth spectral continuum. There is no consensus on how much broadening constitutes a supercontinuum; however researchers have published work claiming as little as 60 nm of broadening as a supercontinuum. There is also no agreement on the spectral flatness required to define the bandwidth of the source, with authors using anything from 5 dB to 40 dB or more. In addition the term supercontinuum itself did not gain widespread acceptance until this century, with many authors using alternative phrases to describe their continua during the 1970s, 1980s and 1990s.

Filling factor, is a quantity measuring the efficiency of absorption of pump in the core of a double-clad fiber.

In optics, the term soliton is used to refer to any optical field that does not change during propagation because of a delicate balance between nonlinear and linear effects in the medium. There are two main kinds of solitons:

Dissipative solitons (DSs) are stable solitary localized structures that arise in nonlinear spatially extended dissipative systems due to mechanisms of self-organization. They can be considered as an extension of the classical soliton concept in conservative systems. An alternative terminology includes autosolitons, spots and pulses.

<span class="mw-page-title-main">F. J. Duarte</span>

Francisco Javier "Frank" Duarte is a laser physicist and author/editor of several books on tunable lasers.

In physical optics or wave optics, a vector soliton is a solitary wave with multiple components coupled together that maintains its shape during propagation. Ordinary solitons maintain their shape but have effectively only one (scalar) polarization component, while vector solitons have two distinct polarization components. Among all the types of solitons, optical vector solitons draw the most attention due to their wide range of applications, particularly in generating ultrafast pulses and light control technology. Optical vector solitons can be classified into temporal vector solitons and spatial vector solitons. During the propagation of both temporal solitons and spatial solitons, despite being in a medium with birefringence, the orthogonal polarizations can copropagate as one unit without splitting due to the strong cross-phase modulation and coherent energy exchange between the two polarizations of the vector soliton which may induce intensity differences between these two polarizations. Thus vector solitons are no longer linearly polarized but rather elliptically polarized.

Fritz Peter Schäfer was a German physicist, born in Hersfeld, Hesse-Nassau. He is the co-inventor of the organic dye laser. His book, Dye Lasers, is considered a classic in the field of tunable lasers. In this book the chapter written by Schäfer gives an ample and insightful exposition on organic laser dye molecules in addition to a description on the physics of telescopic, and multiple-prism, tunable narrow-linewidth laser oscillators.

<span class="mw-page-title-main">James P. Gordon</span> American physicist

James Power Gordon was an American physicist known for his work in the fields of optics and quantum electronics. His contributions include the design, analysis and construction of the first maser in 1954 as a doctoral student at Columbia University under the supervision of C. H. Townes, development of the quantal equivalent of Shannon's information capacity formula in 1962, development of the theory for the diffusion of atoms in an optical trap in 1980, and the discovery of what is now known as the Gordon-Haus effect in soliton transmission, together with H. A. Haus in 1986. Gordon was a member of the National Academy of Engineering and the National Academy of Sciences.

<span class="mw-page-title-main">Optical rogue waves</span>

Optical rogue waves are rare pulses of light analogous to rogue or freak ocean waves. The term optical rogue waves was coined to describe rare pulses of broadband light arising during the process of supercontinuum generation—a noise-sensitive nonlinear process in which extremely broadband radiation is generated from a narrowband input waveform—in nonlinear optical fiber. In this context, optical rogue waves are characterized by an anomalous surplus in energy at particular wavelengths or an unexpected peak power. These anomalous events have been shown to follow heavy-tailed statistics, also known as L-shaped statistics, fat-tailed statistics, or extreme-value statistics. These probability distributions are characterized by long tails: large outliers occur rarely, yet much more frequently than expected from Gaussian statistics and intuition. Such distributions also describe the probabilities of freak ocean waves and various phenomena in both the man-made and natural worlds. Despite their infrequency, rare events wield significant influence in many systems. Aside from the statistical similarities, light waves traveling in optical fibers are known to obey the similar mathematics as water waves traveling in the open ocean, supporting the analogy between oceanic rogue waves and their optical counterparts. More generally, research has exposed a number of different analogies between extreme events in optics and hydrodynamic systems. A key practical difference is that most optical experiments can be done with a table-top apparatus, offer a high degree of experimental control, and allow data to be acquired extremely rapidly. Consequently, optical rogue waves are attractive for experimental and theoretical research and have become a highly studied phenomenon. The particulars of the analogy between extreme waves in optics and hydrodynamics may vary depending on the context, but the existence of rare events and extreme statistics in wave-related phenomena are common ground.

<span class="mw-page-title-main">Yuri Kivshar</span> Australian nonlinear and optical physicist

Yuri S. Kivshar, Australian Scientist of Ukrainian origin, distinguished professor, head of Nonlinear Physics Centre of The Australian National University (ANU) and research director of The International Research Centre for Nanophotonics and Metamaterials, Australian Federation Fellow.

Semiconductor saturable-absorber mirrors (SESAMs) are a type of saturable absorber used in mode locking lasers.

Alexey Okulov is a Soviet and Russian physicist, the author of pioneering works in laser physics and theoretical physics.

<span class="mw-page-title-main">Baruch Fischer</span> Israeli professor of electro-optics

Baruch Fischer is an Israeli optical physicist and Professor Emeritus in the Andrew and Erna Viterbi Faculty of Electrical and Computer Engineering of the Technion, where he was the Max Knoll Chair in Electro-Optics and Electronics.

References

  1. Emplit, P.; Hamaide, J.P.; Reynaud, F.; Froehly, C.; Barthelemy, A. (1987). "Picosecond steps and dark pulses through nonlinear single mode fibers". Optics Communications. Elsevier BV. 62 (6): 374–379. Bibcode:1987OptCo..62..374E. doi:10.1016/0030-4018(87)90003-4. ISSN   0030-4018.
  2. Kivshar, Yuri S.; Turitsyn, Sergei K. (1993-03-01). "Vector dark solitons". Optics Letters. The Optical Society. 18 (5): 337–9. Bibcode:1993OptL...18..337K. doi:10.1364/ol.18.000337. ISSN   0146-9592. PMID   19802128.
  3. Kivshar, Y (1998-05-01). "Dark optical solitons: physics and applications". Physics Reports. Elsevier BV. 298 (2–3): 81–197. Bibcode:1998PhR...298...81K. doi:10.1016/s0370-1573(97)00073-2. ISSN   0370-1573. and references therein.
  4. Mingming Feng, Steven T. Cundiff, R. P. Mirin, and K. L. Silverman (2008). Dark Pulse Diode Laser. Conference on Lasers and Electro-Optics. p. CThP1. Retrieved 2020-03-15.{{cite conference}}: CS1 maint: multiple names: authors list (link)
  5. Zhang, H.; Tang, D. Y.; Zhao, L. M.; Wu, X. (2009-10-27). "Dark pulse emission of a fiber laser" (PDF). Physical Review A. 80 (4): 045803. arXiv: 0910.5799 . Bibcode:2009PhRvA..80d5803Z. doi:10.1103/physreva.80.045803. ISSN   1050-2947. S2CID   118581850. Archived from the original (PDF) on 2011-07-17. Retrieved 2009-10-30.
  6. Brunzell, M.; Widarsson, M.; Krook, C.; Barret, L.; Laurell, F.; Pasiskevicius, V. (2022-02-22). "Intra-cavity dark pulse generation through synchronized sum-frequency mixing". Optics Letters. 47 (5): 1105–1108. Bibcode:2022OptL...47.1105B. doi:10.1364/OL.448148. PMID   35230302. S2CID   246548854 . Retrieved 2022-03-03.