Relativistic wave equations

Last updated

In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT. The equations themselves are called "wave equations" or "field equations", because they have the mathematical form of a wave equation or are generated from a Lagrangian density and the field-theoretic Euler–Lagrange equations (see classical field theory for background).

Contents

In the Schrödinger picture, the wave function or field is the solution to the Schrödinger equation; one of the postulates of quantum mechanics. All relativistic wave equations can be constructed by specifying various forms of the Hamiltonian operator Ĥ describing the quantum system. Alternatively, Feynman's path integral formulation uses a Lagrangian rather than a Hamiltonian operator.

More generally – the modern formalism behind relativistic wave equations is Lorentz group theory, wherein the spin of the particle has a correspondence with the representations of the Lorentz group. [1]

History

Early 1920s: Classical and quantum mechanics

The failure of classical mechanics applied to molecular, atomic, and nuclear systems and smaller induced the need for a new mechanics: quantum mechanics . The mathematical formulation was led by De Broglie, Bohr, Schrödinger, Pauli, and Heisenberg, and others, around the mid-1920s, and at that time was analogous to that of classical mechanics. The Schrödinger equation and the Heisenberg picture resemble the classical equations of motion in the limit of large quantum numbers and as the reduced Planck constant ħ, the quantum of action, tends to zero. This is the correspondence principle. At this point, special relativity was not fully combined with quantum mechanics, so the Schrödinger and Heisenberg formulations, as originally proposed, could not be used in situations where the particles travel near the speed of light, or when the number of each type of particle changes (this happens in real particle interactions; the numerous forms of particle decays, annihilation, matter creation, pair production, and so on).

Late 1920s: Relativistic quantum mechanics of spin-0 and spin-1/2 particles

A description of quantum mechanical systems which could account for relativistic effects was sought for by many theoretical physicists from the late 1920s to the mid-1940s. [2] The first basis for relativistic quantum mechanics, i.e. special relativity applied with quantum mechanics together, was found by all those who discovered what is frequently called the Klein–Gordon equation:

by inserting the energy operator and momentum operator into the relativistic energy–momentum relation:

The solutions to ( 1 ) are scalar fields. The KG equation is undesirable due to its prediction of negative energies and probabilities, as a result of the quadratic nature of ( 2 ) – inevitable in a relativistic theory. This equation was initially proposed by Schrödinger, and he discarded it for such reasons, only to realize a few months later that its non-relativistic limit (what is now called the Schrödinger equation) was still of importance. Nevertheless, ( 1 ) is applicable to spin-0 bosons. [3]

Neither the non-relativistic nor relativistic equations found by Schrödinger could predict the fine structure in the Hydrogen spectral series. The mysterious underlying property was spin. The first two-dimensional spin matrices (better known as the Pauli matrices) were introduced by Pauli in the Pauli equation; the Schrödinger equation with a non-relativistic Hamiltonian including an extra term for particles in magnetic fields, but this was phenomenological. Weyl found a relativistic equation in terms of the Pauli matrices; the Weyl equation, for massless spin-1/2 fermions. The problem was resolved by Dirac in the late 1920s, when he furthered the application of equation ( 2 ) to the electron – by various manipulations he factorized the equation into the form:

and one of these factors is the Dirac equation (see below), upon inserting the energy and momentum operators. For the first time, this introduced new four-dimensional spin matrices α and β in a relativistic wave equation, and explained the fine structure of hydrogen. The solutions to ( 3A ) are multi-component spinor fields, and each component satisfies ( 1 ). A remarkable result of spinor solutions is that half of the components describe a particle while the other half describe an antiparticle; in this case the electron and positron. The Dirac equation is now known to apply for all massive spin-1/2 fermions. In the non-relativistic limit, the Pauli equation is recovered, while the massless case results in the Weyl equation.

Although a landmark in quantum theory, the Dirac equation is only true for spin-1/2 fermions, and still predicts negative energy solutions, which caused controversy at the time (in particular – not all physicists were comfortable with the "Dirac sea" of negative energy states).

1930s–1960s: Relativistic quantum mechanics of higher-spin particles

The natural problem became clear: to generalize the Dirac equation to particles with any spin; both fermions and bosons, and in the same equations their antiparticles (possible because of the spinor formalism introduced by Dirac in his equation, and then-recent developments in spinor calculus by van der Waerden in 1929), and ideally with positive energy solutions. [2]

This was introduced and solved by Majorana in 1932, by a deviated approach to Dirac. Majorana considered one "root" of ( 3A ):

where ψ is a spinor field now with infinitely many components, irreducible to a finite number of tensors or spinors, to remove the indeterminacy in sign. The matrices α and β are infinite-dimensional matrices, related to infinitesimal Lorentz transformations. He did not demand that each component of 3B satisfy equation ( 2 ); instead he regenerated the equation using a Lorentz-invariant action, via the principle of least action, and application of Lorentz group theory. [4] [5]

Majorana produced other important contributions that were unpublished, including wave equations of various dimensions (5, 6, and 16). They were anticipated later (in a more involved way) by de Broglie (1934), and Duffin, Kemmer, and Petiau (around 1938–1939) see Duffin–Kemmer–Petiau algebra. The Dirac–Fierz–Pauli formalism was more sophisticated than Majorana's, as spinors were new mathematical tools in the early twentieth century, although Majorana's paper of 1932 was difficult to fully understand; it took Pauli and Wigner some time to understand it, around 1940. [2]

Dirac in 1936, and Fierz and Pauli in 1939, built equations from irreducible spinors A and B, symmetric in all indices, for a massive particle of spin n + 12 for integer n (see Van der Waerden notation for the meaning of the dotted indices):

where p is the momentum as a covariant spinor operator. For n = 0, the equations reduce to the coupled Dirac equations and A and B together transform as the original Dirac spinor. Eliminating either A or B shows that A and B each fulfill ( 1 ). [2] The direct derivation of the Dirac-Pauli-Fierz equations using the Bargmann-Wigner operators is given in. [6]

In 1941, Rarita and Schwinger focussed on spin-32 particles and derived the Rarita–Schwinger equation, including a Lagrangian to generate it, and later generalized the equations analogous to spin n + 12 for integer n. In 1945, Pauli suggested Majorana's 1932 paper to Bhabha, who returned to the general ideas introduced by Majorana in 1932. Bhabha and Lubanski proposed a completely general set of equations by replacing the mass terms in ( 3A ) and ( 3B ) by an arbitrary constant, subject to a set of conditions which the wave functions must obey. [7]

Finally, in the year 1948 (the same year as Feynman's path integral formulation was cast), Bargmann and Wigner formulated the general equation for massive particles which could have any spin, by considering the Dirac equation with a totally symmetric finite-component spinor, and using Lorentz group theory (as Majorana did): the Bargmann–Wigner equations. [2] [8] In the early 1960s, a reformulation of the Bargmann–Wigner equations was made by H. Joos and Steven Weinberg, the Joos–Weinberg equation. Various theorists at this time did further research in relativistic Hamiltonians for higher spin particles. [1] [9] [10]

1960s–present

The relativistic description of spin particles has been a difficult problem in quantum theory. It is still an area of the present-day research because the problem is only partially solved; including interactions in the equations is problematic, and paradoxical predictions (even from the Dirac equation) are still present. [5]

Linear equations

The following equations have solutions which satisfy the superposition principle, that is, the wave functions are additive.

Throughout, the standard conventions of tensor index notation and Feynman slash notation are used, including Greek indices which take the values 1, 2, 3 for the spatial components and 0 for the timelike component of the indexed quantities. The wave functions are denoted ψ, and μ are the components of the four-gradient operator.

In matrix equations, the Pauli matrices are denoted by σμ in which μ = 0, 1, 2, 3, where σ0 is the 2 × 2 identity matrix: and the other matrices have their usual representations. The expression is a 2 × 2 matrix operator which acts on 2-component spinor fields.

The gamma matrices are denoted by γμ, in which again μ = 0, 1, 2, 3, and there are a number of representations to select from. The matrix γ0 is not necessarily the 4 × 4 identity matrix. The expression is a 4 × 4 matrix operator which acts on 4-component spinor fields.

Note that terms such as "mc" scalar multiply an identity matrix of the relevant dimension, the common sizes are 2 × 2 or 4 × 4, and are conventionally not written for simplicity.

Particle spin quantum number sNameEquationTypical particles the equation describes
0 Klein–Gordon equation Massless or massive spin-0 particle (such as Higgs bosons).
1/2 Weyl equation Massless spin-1/2 particles.
Dirac equation Massive spin-1/2 particles (such as electrons).
Two-body Dirac equations

Massive spin-1/2 particles (such as electrons).
Majorana equation Massive Majorana particles.
Breit equation Two massive spin-1/2 particles (such as electrons) interacting electromagnetically to first order in perturbation theory.
1 Maxwell's equations (in QED using the Lorenz gauge) Photons, massless spin-1 particles.
Proca equation Massive spin-1 particle (such as W and Z bosons).
3/2 Rarita–Schwinger equation Massive spin-3/2 particles.
s Bargmann–Wigner equations

where ψ is a rank-2s 4-component spinor.

Free particles of arbitrary spin (bosons and fermions). [9] [11]
Joos–Weinberg equation Free particles of arbitrary spin (bosons and fermions).

Linear gauge fields

The Duffin–Kemmer–Petiau equation is an alternative equation for spin-0 and spin-1 particles:

Constructing RWEs

Using 4-vectors and the energy–momentum relation

Start with the standard special relativity (SR) 4-vectors

Note that each 4-vector is related to another by a Lorentz scalar:

Now, just apply the standard Lorentz scalar product rule to each one:

The last equation is a fundamental quantum relation.

When applied to a Lorentz scalar field , one gets the Klein–Gordon equation, the most basic of the quantum relativistic wave equations.

The Schrödinger equation is the low-velocity limiting case (vc) of the Klein–Gordon equation.

When the relation is applied to a four-vector field instead of a Lorentz scalar field , then one gets the Proca equation (in Lorenz gauge):

If the rest mass term is set to zero (light-like particles), then this gives the free Maxwell equation (in Lorenz gauge)

Representations of the Lorentz group

Under a proper orthochronous Lorentz transformation x → Λx in Minkowski space, all one-particle quantum states ψjσ of spin j with spin z-component σ locally transform under some representation D of the Lorentz group: [12] [13] where D(Λ) is some finite-dimensional representation, i.e. a matrix. Here ψ is thought of as a column vector containing components with the allowed values of σ. The quantum numbers j and σ as well as other labels, continuous or discrete, representing other quantum numbers are suppressed. One value of σ may occur more than once depending on the representation. Representations with several possible values for j are considered below.

The irreducible representations are labeled by a pair of half-integers or integers (A, B). From these all other representations can be built up using a variety of standard methods, like taking tensor products and direct sums. In particular, space-time itself constitutes a 4-vector representation (1/2, 1/2) so that Λ ∈ D(1/2, 1/2). To put this into context; Dirac spinors transform under the (1/2, 0) ⊕ (0, 1/2) representation. In general, the (A, B) representation space has subspaces that under the subgroup of spatial rotations, SO(3), transform irreducibly like objects of spin j, where each allowed value: occurs exactly once. [14] In general, tensor products of irreducible representations are reducible; they decompose as direct sums of irreducible representations.

The representations D(j, 0) and D(0, j) can each separately represent particles of spin j. A state or quantum field in such a representation would satisfy no field equation except the Klein–Gordon equation.

Non-linear equations

There are equations which have solutions that do not satisfy the superposition principle.

Nonlinear gauge fields

Spin 2

See also

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

The Schrödinger equation is a partial differential equation that governs the wave function of a non-relativistic quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

<span class="mw-page-title-main">Wave function</span> Mathematical description of quantum state

In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The most common symbols for a wave function are the Greek letters ψ and Ψ. Wave functions are complex-valued. For example, a wave function might assign a complex number to each point in a region of space. The Born rule provides the means to turn these complex probability amplitudes into actual probabilities. In one common form, it says that the squared modulus of a wave function that depends upon position is the probability density of measuring a particle as being at a given place. The integral of a wavefunction's squared modulus over all the system's degrees of freedom must be equal to 1, a condition called normalization. Since the wave function is complex-valued, only its relative phase and relative magnitude can be measured; its value does not, in isolation, tell anything about the magnitudes or directions of measurable observables. One has to apply quantum operators, whose eigenvalues correspond to sets of possible results of measurements, to the wave function ψ and calculate the statistical distributions for measurable quantities.

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a differential equation version of the relativistic energy–momentum relation .

In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.

In atomic physics, the electron magnetic moment, or more specifically the electron magnetic dipole moment, is the magnetic moment of an electron resulting from its intrinsic properties of spin and electric charge. The value of the electron magnetic moment is −9.2847646917(29)×10−24 J⋅T−1. In units of the Bohr magneton (μB), it is −1.00115965218059(13) μB, a value that was measured with a relative accuracy of 1.3×10−13.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

In physics, the zitterbewegung (German pronunciation:[ˈtsɪtɐ.bəˌveːɡʊŋ], from German zittern 'to tremble, jitter' and Bewegung 'motion') is the theoretical prediction of a rapid oscillatory motion of elementary particles that obey relativistic wave equations. This prediction was first discussed by Gregory Breit in 1928 and later by Erwin Schrödinger in 1930 as a result of analysis of the wave packet solutions of the Dirac equation for relativistic electrons in free space, in which an interference between positive and negative energy states produces an apparent fluctuation (up to the speed of light) of the position of an electron around the median, with an angular frequency of 2mc2/, or approximately 1.6×1021 radians per second.

The Breit equation, or Dirac–Coulomb–Breit equation, is a relativistic wave equation derived by Gregory Breit in 1929 based on the Dirac equation, which formally describes two or more massive spin-1/2 particles interacting electromagnetically to the first order in perturbation theory. It accounts for magnetic interactions and retardation effects to the order of 1/c2. When other quantum electrodynamic effects are negligible, this equation has been shown to give results in good agreement with experiment. It was originally derived from the Darwin Lagrangian but later vindicated by the Wheeler–Feynman absorber theory and eventually quantum electrodynamics.

In quantum field theory, a fermionic field is a quantum field whose quanta are fermions; that is, they obey Fermi–Dirac statistics. Fermionic fields obey canonical anticommutation relations rather than the canonical commutation relations of bosonic fields.

In quantum mechanics, the momentum operator is the operator associated with the linear momentum. The momentum operator is, in the position representation, an example of a differential operator. For the case of one particle in one spatial dimension, the definition is: where ħ is the reduced Planck constant, i the imaginary unit, x is the spatial coordinate, and a partial derivative is used instead of a total derivative since the wave function is also a function of time. The "hat" indicates an operator. The "application" of the operator on a differentiable wave function is as follows:

In physics, the Majorana equation is a relativistic wave equation. It is named after the Italian physicist Ettore Majorana, who proposed it in 1937 as a means of describing fermions that are their own antiparticle. Particles corresponding to this equation are termed Majorana particles, although that term now has a more expansive meaning, referring to any fermionic particle that is its own anti-particle.

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-1/2 particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927. In its linearized form it is known as Lévy-Leblond equation.

In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl1,3(R), or equivalently the geometric algebra G(M4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and relativistic physics."

In physics, relativistic quantum mechanics (RQM) is any Poincaré covariant formulation of quantum mechanics (QM). This theory is applicable to massive particles propagating at all velocities up to those comparable to the speed of light c, and can accommodate massless particles. The theory has application in high energy physics, particle physics and accelerator physics, as well as atomic physics, chemistry and condensed matter physics. Non-relativistic quantum mechanics refers to the mathematical formulation of quantum mechanics applied in the context of Galilean relativity, more specifically quantizing the equations of classical mechanics by replacing dynamical variables by operators. Relativistic quantum mechanics (RQM) is quantum mechanics applied with special relativity. Although the earlier formulations, like the Schrödinger picture and Heisenberg picture were originally formulated in a non-relativistic background, a few of them also work with special relativity.

<span class="mw-page-title-main">Alexandru Proca</span> Romanian theoretical physicist

Alexandru Proca was a Romanian physicist who studied and worked in France. He developed the vector meson theory of nuclear forces and the relativistic quantum field equations that bear his name for the massive, vector spin-1 mesons.

<span class="mw-page-title-main">Weyl equation</span> Relativistic wave equation describing massless fermions

In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.

<span class="mw-page-title-main">Two-body Dirac equations</span> Quantum field theory equations

In quantum field theory, and in the significant subfields of quantum electrodynamics (QED) and quantum chromodynamics (QCD), the two-body Dirac equations (TBDE) of constraint dynamics provide a three-dimensional yet manifestly covariant reformulation of the Bethe–Salpeter equation for two spin-1/2 particles. Such a reformulation is necessary since without it, as shown by Nakanishi, the Bethe–Salpeter equation possesses negative-norm solutions arising from the presence of an essentially relativistic degree of freedom, the relative time. These "ghost" states have spoiled the naive interpretation of the Bethe–Salpeter equation as a quantum mechanical wave equation. The two-body Dirac equations of constraint dynamics rectify this flaw. The forms of these equations can not only be derived from quantum field theory they can also be derived purely in the context of Dirac's constraint dynamics and relativistic mechanics and quantum mechanics. Their structures, unlike the more familiar two-body Dirac equation of Breit, which is a single equation, are that of two simultaneous quantum relativistic wave equations. A single two-body Dirac equation similar to the Breit equation can be derived from the TBDE. Unlike the Breit equation, it is manifestly covariant and free from the types of singularities that prevent a strictly nonperturbative treatment of the Breit equation. In applications of the TBDE to QED, the two particles interact by way of four-vector potentials derived from the field theoretic electromagnetic interactions between the two particles. In applications to QCD, the two particles interact by way of four-vector potentials and Lorentz invariant scalar interactions, derived in part from the field theoretic chromomagnetic interactions between the quarks and in part by phenomenological considerations. As with the Breit equation a sixteen-component spinor Ψ is used.

<span class="mw-page-title-main">Bargmann–Wigner equations</span> Wave equation for arbitrary spin particles

In relativistic quantum mechanics and quantum field theory, the Bargmann–Wigner equations describe free particles with non-zero mass and arbitrary spin j, an integer for bosons or half-integer for fermions. The solutions to the equations are wavefunctions, mathematically in the form of multi-component spinor fields.

<span class="mw-page-title-main">Symmetry in quantum mechanics</span> Properties underlying modern physics

Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry in physics, invariance, and conservation laws, are fundamentally important constraints for formulating physical theories and models. In practice, they are powerful methods for solving problems and predicting what can happen. While conservation laws do not always give the answer to the problem directly, they form the correct constraints and the first steps to solving a multitude of problems. In application, understanding symmetries can also provide insights on the eigenstates that can be expected. For example, the existence of degenerate states can be inferred by the presence of non commuting symmetry operators or that the non degenerate states are also eigenvectors of symmetry operators.

References

  1. 1 2 T Jaroszewicz; P.S Kurzepa (1992). "Geometry of spacetime propagation of spinning particles". Annals of Physics. 216 (2): 226–267. Bibcode:1992AnPhy.216..226J. doi:10.1016/0003-4916(92)90176-M.
  2. 1 2 3 4 5 S. Esposito (2011). "Searching for an equation: Dirac, Majorana and the others". Annals of Physics. 327 (6): 1617–1644. arXiv: 1110.6878 . Bibcode:2012AnPhy.327.1617E. doi:10.1016/j.aop.2012.02.016. S2CID   119147261.
  3. B. R. Martin, G.Shaw (2008). Particle Physics . Manchester Physics Series (3rd ed.). John Wiley & Sons. p.  3. ISBN   978-0-470-03294-7.
  4. R. Casalbuoni (2006). "Majorana and the Infinite Component Wave Equations". Pos Emc. 2006: 004. arXiv: hep-th/0610252 . Bibcode:2006hep.th...10252C.
  5. 1 2 X. Bekaert; M.R. Traubenberg; M. Valenzuela (2009). "An infinite supermultiplet of massive higher-spin fields". Journal of High Energy Physics. 2009 (5): 118. arXiv: 0904.2533 . Bibcode:2009JHEP...05..118B. doi:10.1088/1126-6708/2009/05/118. S2CID   16285006.
  6. A.P. Isaev; M.A. Podoinitsyn (2018). "Two-spinor description of massive particles and relativistic spin projection operators". Nuclear Physics B. 929: 452–484. arXiv: 1712.00833 . Bibcode:2018NuPhB.929..452I. doi:10.1016/j.nuclphysb.2018.02.013. S2CID   59582838.
  7. R.K. Loide; I. Ots; R. Saar (1997). "Bhabha relativistic wave equations". Journal of Physics A: Mathematical and General. 30 (11): 4005–4017. Bibcode:1997JPhA...30.4005L. doi:10.1088/0305-4470/30/11/027.
  8. Bargmann, V.; Wigner, E. P. (1948). "Group theoretical discussion of relativistic wave equations". Proc. Natl. Acad. Sci. U.S.A. 34 (5): 211–23. Bibcode:1948PNAS...34..211B. doi: 10.1073/pnas.34.5.211 . PMC   1079095 . PMID   16578292.
  9. 1 2 E.A. Jeffery (1978). "Component Minimization of the Bargman–Wigner wavefunction". Australian Journal of Physics. 31 (2): 137–149. Bibcode:1978AuJPh..31..137J. doi: 10.1071/ph780137 .
  10. R.F Guertin (1974). "Relativistic hamiltonian equations for any spin". Annals of Physics. 88 (2): 504–553. Bibcode:1974AnPhy..88..504G. doi:10.1016/0003-4916(74)90180-8.
  11. R.Clarkson, D.G.C. McKeon (2003). "Quantum Field Theory" (PDF). pp. 61–69. Archived from the original (PDF) on 2009-05-30.
  12. Weinberg, S. (1964). "Feynman Rules for Any spin" (PDF). Phys. Rev. 133 (5B): B1318–B1332. Bibcode:1964PhRv..133.1318W. doi:10.1103/PhysRev.133.B1318. Archived from the original (PDF) on 2022-03-25. Retrieved 2016-12-29.; Weinberg, S. (1964). "Feynman Rules for Any spin. II. Massless Particles" (PDF). Phys. Rev. 134 (4B): B882–B896. Bibcode:1964PhRv..134..882W. doi:10.1103/PhysRev.134.B882. Archived from the original (PDF) on 2022-03-09. Retrieved 2016-12-29.; Weinberg, S. (1969). "Feynman Rules for Any spin. III" (PDF). Phys. Rev. 181 (5): 1893–1899. Bibcode:1969PhRv..181.1893W. doi:10.1103/PhysRev.181.1893. Archived from the original (PDF) on 2022-03-25. Retrieved 2016-12-29.
  13. K. Masakatsu (2012). "Superradiance Problem of Bosons and Fermions for Rotating Black Holes in Bargmann–Wigner Formulation". arXiv: 1208.0644 [gr-qc].
  14. Weinberg, S (2002), "5", The Quantum Theory of Fields, vol I, Cambridge University Press, p.  , ISBN   0-521-55001-7

Further reading