Snow gauge

Last updated
A snow gauge Snow gauge.JPG
A snow gauge

A snow gauge is a type of instrument used by meteorologists and hydrologists to gather and measure the amount of solid precipitation (as opposed to liquid precipitation, which is measured by a rain gauge) over a set period of time.[ citation needed ]

Contents

History

The first use of snow gauges were precipitation gauges that was widely used in 1247 during the Southern Song dynasty to gather meteorological data. The Song Chinese mathematician and inventor Qin Jiushao records the use of gathering rain and snowfall measurements in the Song mathematical treatise Mathematical Treatise in Nine Sections . The book discusses the use of large conical or barrel-shaped snow gauges made from bamboo situated in mountain passes and uplands, which are speculated to be first referenced to snow measurement. [1] [2]

Description

The snow gauge consists of two parts: a copper catchment container; and the funnel-shaped gauge itself. The actual gauge is mounted on a pipe outdoors and is approximately 1.5 m (150 cm; 59 in; 4 ft 11 in) in height, while the container is 51.5 cm (20.3 in; 1 ft 8.3 in) in length.[ citation needed ]

Measurement procedure

When snow is collected, the container is removed and replaced with a spare one. The snow is then melted while it is still in the container, and then poured into a glass measuring graduate. While the depth of snow is normally measured in centimetres, the measurement of melted snow (water equivalent) is in millimetres.[ citation needed ]

An estimate of the snow depth can be obtained by multiplying the water equivalent by a factor of 10. This multiplier can vary over a wide range, however, with many[ who? ] citing a range from 5 to 30, while the National Snow and Ice Data Center has quoted a range as wide as from 3 to 100. Any proposed factor depends on the water content of the snow (how "dry" it is), so this at best provides only a rough estimate of snow depth.[ citation needed ]

Issues

The snow gauge suffers from the same problem as that of the rain gauge when conditions are windy. If the wind is strong enough, then the snow may be blown across the wind gauge, and the amount of snow fallen will be under-reported. However, due to the shape and size of the funnel, this is a minor problem.

If the wind is very strong and a blizzard occurs, then extra snow may be blown into the gauge, and the amount of snow fallen will be over-reported. In this case the observer must judge how much of the water is from snow blown into the container and how much is fallen snow.

Another problem occurs when both snow and rain fall before the observer has time to change the gauge. In all of these cases the observer must judge how much of the water is snow and how much is rain.

Other snow gauges

Automated

Remote reading gauges, such as used by weather stations, work similarly to rain gauges. They have a large catch area (such as a drum sawn in half, top to bottom) which collects snow until a given weight is collected. When this critical weight is reached, it tips and empties the snow catch. This dumping trips a switch, sending a signal. The collection then repeats. If the catch container has a heater in it, it measures the snow weight accurately. It is also possible to tip based on volume instead of weight, with appropriate fill sensing.

Snow pillow

Another snow sensor called a snow pillow looks like a round bag lying on the ground. Inside the pillow is a liquid such as an environmentally safe[ citation needed ] antifreeze. Usually the snow pillow will be connected to a manometer. The manometer reading will vary based on how much snow is sitting on the pillow. This type of sensor works well for many locations but is more difficult to use in areas of hard blowing snow.

Related Research Articles

<span class="mw-page-title-main">Pressure measurement</span> Analysis of force applied by a fluid on a surface

Pressure measurement is the measurement of an applied force by a fluid on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure mechanically are called pressure gauges,vacuum gauges or compound gauges. The widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.

<span class="mw-page-title-main">Pressure</span> Force distributed over an area

Pressure is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure is the pressure relative to the ambient pressure.

<span class="mw-page-title-main">Snow</span> Precipitation in the form of ice crystal flakes

Snow comprises individual ice crystals that grow while suspended in the atmosphere—usually within clouds—and then fall, accumulating on the ground where they undergo further changes. It consists of frozen crystalline water throughout its life cycle, starting when, under suitable conditions, the ice crystals form in the atmosphere, increase to millimeter size, precipitate and accumulate on surfaces, then metamorphose in place, and ultimately melt, slide or sublimate away.

<span class="mw-page-title-main">Rain gauge</span> Metal instrument for measurement of rainfall and other pre-cipitations

A rain gauge is an instrument used by meteorologists and hydrologists to gather and measure the amount of liquid precipitation over a predefined area, over a period of time. It is used for determining the depth of precipitation that occurs over a unit area and thus measuring rainfall amount.

Weather station Facility for atmospheric research and prediction

A weather station is a facility, either on land or sea, with instruments and equipment for measuring atmospheric conditions to provide information for weather forecasts and to study the weather and climate. The measurements taken include temperature, atmospheric pressure, humidity, wind speed, wind direction, and precipitation amounts. Wind measurements are taken with as few other obstructions as possible, while temperature and humidity measurements are kept free from direct solar radiation, or insolation. Manual observations are taken at least once daily, while automated measurements are taken at least once an hour. Weather conditions out at sea are taken by ships and buoys, which measure slightly different meteorological quantities such as sea surface temperature (SST), wave height, and wave period. Drifting weather buoys outnumber their moored versions by a significant amount.

<span class="mw-page-title-main">Winter storm</span> Event in which the varieties of precipitation are formed that only occur at low temperatures

A winter storm is an event in which wind coincides with varieties of precipitation that only occur at freezing temperatures, such as snow, mixed snow and rain, or freezing rain. In temperate continental climates, these storms are not necessarily restricted to the winter season, but may occur in the late autumn and early spring as well. A snowstorm with strong winds and other conditions meeting certain criteria is called a blizzard.

<span class="mw-page-title-main">Precipitation</span> Product of the condensation of atmospheric water vapor that falls under gravity

In meteorology, precipitation is any product of the condensation of atmospheric water vapor that falls under gravitational pull from clouds. The main forms of precipitation include drizzle, rain, sleet, snow, ice pellets, graupel and hail. Precipitation occurs when a portion of the atmosphere becomes saturated with water vapor, so that the water condenses and "precipitates" or falls. Thus, fog and mist are not precipitation but colloids, because the water vapor does not condense sufficiently to precipitate. Two processes, possibly acting together, can lead to air becoming saturated: cooling the air or adding water vapor to the air. Precipitation forms as smaller droplets coalesce via collision with other rain drops or ice crystals within a cloud. Short, intense periods of rain in scattered locations are called showers.

<span class="mw-page-title-main">Millimetre of mercury</span> Manometric unit of pressure

A millimetre of mercury is a manometric unit of pressure, formerly defined as the extra pressure generated by a column of mercury one millimetre high, and currently defined as exactly 133.322387415 pascals. It is denoted mmHg or mm Hg.

Automatic weather station Meteorological instrument

An automatic weather station (AWS) is an automated version of the traditional weather station, either to save human labour or to enable measurements from remote areas. An AWS will typically consist of a weather-proof enclosure containing the data logger, rechargeable battery, telemetry (optional) and the meteorological sensors with an attached solar panel or wind turbine and mounted upon a mast. The specific configuration may vary due to the purpose of the system. The system may report in near real time via the Argos System, LoRa and the Global Telecommunications System, or save the data for later recovery.

<span class="mw-page-title-main">Pan evaporation</span> Measurement that combines several climate elements

Pan evaporation is a measurement that combines or integrates the effects of several climate elements: temperature, humidity, rain fall, drought dispersion, solar radiation, and wind. Evaporation is greatest on hot, windy, dry, sunny days; and is greatly reduced when clouds block the sun and when air is cool, calm, and humid. Pan evaporation measurements enable farmers and ranchers to understand how much water their crops will need.

<span class="mw-page-title-main">Meteorological instrumentation</span>

Meteorological instruments, including meteorological sensors, are the equipment used to find the state of the atmosphere at a given time. Each science has its own unique sets of laboratory equipment. Meteorology, however, is a science which does not use much laboratory equipment but relies more on on-site observation and remote sensing equipment. In science, an observation, or observable, is an abstract idea that can be measured and for which data can be taken. Rain was one of the first quantities to be measured historically. Two other accurately measured weather-related variables are wind and humidity. Many attempts had been made prior to the 15th century to construct adequate equipment to measure atmospheric variables.

Snow pillow

A snow pillow is a device for measuring snowpack, especially for automated reporting stations such as SNOTEL.

Automated airport weather station Automated sensor suites

Airport weather stations are automated sensor suites which are designed to serve aviation and meteorological operations, weather forecasting and climatology. Automated airport weather stations have become part of the backbone of weather observing in the United States and Canada and are becoming increasingly more prevalent worldwide due to their efficiency and cost-savings.

Outline of meteorology Overview of and topical guide to meteorology

The following outline is provided as an overview of and topical guide to the field of Meteorology.

<span class="mw-page-title-main">Rain and snow mixed</span> Form of precipitation consisting of rain and melting snow

Rain and snow mixed is precipitation composed of a mixture of rain and partially melted snow. Unlike ice pellets, which are hard, and freezing rain, which is fluid until striking an object where it fully freezes, this precipitation is soft and translucent, but it contains some traces of ice crystals from partially fused snowflakes, also called slush. In any one location, it usually occurs briefly as a transition phase from rain to snow or vice versa, but hits the surface before fully transforming. Its METAR code is RASN or SNRA.

<span class="mw-page-title-main">Classifications of snow</span> Methods for describing snowfall events and the resulting snow crystals

Classifications of snow describe and categorize the attributes of snow-generating weather events, including the individual crystals both in the air and on the ground, and the deposited snow pack as it changes over time. Snow can be classified by describing the weather event that is producing it, the shape of its ice crystals or flakes, how it collects on the ground, and thereafter how it changes form and composition. Depending on the status of the snow in the air or on the ground, a different classification applies.

Snowboard (meteorology)

A snowboard (US) or weaverboard (Canada) is a meteorological tool used to aid in the obtaining of accurate measurement of snow accumulation.

Snow science Interdisciplinary field of hydrology, mechanics and meteorology

Snow science addresses how snow forms, its distribution, and processes affecting how snowpacks change over time. Scientists improve storm forecasting, study global snow cover and its effect on climate, glaciers, and water supplies around the world. The study includes physical properties of the material as it changes, bulk properties of in-place snow packs, and the aggregate properties of regions with snow cover. In doing so, they employ on-the-ground physical measurement techniques to establish ground truth and remote sensing techniques to develop understanding of snow-related processes over large areas.

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.

<span class="mw-page-title-main">Trace (precipitation)</span>

In meteorology, a trace denotes an amount of precipitation, such as rain or snow, that is greater than zero, but is too small to be measured by standard units or methods of measurement. The designation of a trace rather than zero is used to indicate that precipitation did fall, but not enough to be measured reliably. This is important for both weather forecasting and climatological purposes, because even precipitation amounts too small to be measured can have significant societal impacts.

References

  1. Strangeways, Ian (2011). Precipitation: Theory, Measurement and Distribution. Cambridge University Press (published April 14, 2011). p. 140. ISBN   978-0521172929.
  2. Selin, Helaine (2008). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures (2nd ed.). Springer (published April 16, 2008). p. 736. ISBN   978-1402045592.