This article needs additional citations for verification .(November 2023) |
A total station or total station theodolite is an electronic/optical instrument used for surveying and building construction. It is an electronic transit theodolite integrated with electronic distance measurement (EDM) to measure both vertical and horizontal angles and the slope distance from the instrument to a particular point, and an on-board computer to collect data and perform triangulation calculations. [1]
Robotic or motorized total stations allow the operator to control the instrument from a distance via remote control. In theory, this eliminates the need for an assistant staff member, as the operator holds the retroreflector and controls the total station from the observed point. In practice, however, an assistant surveyor is often needed when the surveying is being conducted in busy areas such as on a public carriageway or construction site. This is to prevent people from disrupting the total station as they walk past, which would necessitate resetting the tripod and re-establishing a baseline. Additionally, an assistant surveyor discourages opportunistic theft, which is not uncommon due to the value of the instrument. If all else fails, most total stations have serial numbers. The National Society of Professional Surveyors hosts a registry of stolen equipment which can be checked by institutions that service surveying equipment to prevent stolen instruments from circulating. [2] These motorized total stations can also be used in automated setups known as "automated motorized total station".
Most total station instruments measure angles by means of electro-optical scanning of extremely precise digital bar-codes etched on rotating glass cylinders or discs within the instrument. The best quality total stations are capable of measuring angles within a standard deviation of 0.5 arc-seconds. Inexpensive "construction grade" total stations can generally measure angles within standard deviations of 5 or 10 arc-seconds.
Angle measurement is typically performed by the operator first occupying a known point, aiming the head of the instrument at a target or prism which exists at either another known point or along an azimuth, which is to be held as a backsight — sighting with the reticle inside the eyepiece — then holding that line as an angle of 00°00‘̣00“̣. The operator then will turn the head of the instrument at a target or feature that is to be observed as a foresight and record the AR (Angle Right) from the backsight measured by the instrument in which a horizontal angle is produced. Angular error in the instrument as well as collimation error can be mitigated in many total stations by performing a set collection. This entails witnessing any angles recorded an equal number of times in both "direct" and "reverse" modes by sighting the observed backsight and foresights with the instrument facing the targets normally as well as with the scope flipped or "plunged" 180°. The recorded sets of angles taken from each target will be averaged together and a mean angle will be generated. [3]
Measurement of distance is accomplished with a modulated infrared carrier signal, generated by a small solid-state emitter within the instrument's optical path, and reflected by a prism reflector or the object under survey. The modulation pattern in the returning signal is read and interpreted by the computer in the total station. The distance is determined by emitting and receiving multiple frequencies, and determining the integer number of wavelengths to the target for each frequency. Most total stations use purpose-built glass prism (surveying) reflectors for the EDM signal. A typical total station can measure distances up to 1,500 meters (4,900 ft) with an accuracy of about 1.5 millimeters (0.059 in) ± 2 parts per million. [4]
Reflectorless total stations can measure distances to any object that is reasonably light in color, up to a few hundred meters.
The coordinates of an unknown point relative to a known coordinate can be determined using the total station as long as a direct line of sight can be established between the two points. Angles and distances are measured from the total station to points under survey, and the coordinates (X, Y, and Z; or easting, northing, and elevation) of surveyed points relative to the total station position are calculated using trigonometry and triangulation.
To determine an absolute location, a total station requires line of sight observations and can be set up over a known point or with line of sight to 2 or more points with known location, called free stationing. [5] [6]
For this reason, some total stations also have a global navigation satellite system (GNSS) receiver and do not require a direct line of sight to determine coordinates. However, GNSS measurements may require longer occupation periods and offer relatively poor accuracy in the vertical axis. [5]
Some models include internal electronic data storage to record distance, horizontal angle, and vertical angle measured, while other models are equipped to write these measurements to an external data collector, such as a hand-held computer.
When data is downloaded from a total station onto a computer, application software can be used to compute results and generate a map of the surveyed area. The newest generation of total stations can also show the map on the touch-screen of the instrument immediately after measuring the points.
Most large-scale excavation or mapping projects benefit greatly from the proficient use of total stations. They are mainly used by land surveyors and civil engineers, either to record features as in topographic surveying or to set out features (such as roads, houses or boundaries). They are used by police, crime scene investigators, private accident reconstructionists and insurance companies to take measurements of scenes. Total stations are also employed by archaeologists, offering millimeter accuracy difficult to achieve using other tools as well as flexibility in setup location. They prove crucial in recording artifact locations, architectural dimensions, and site topography. [7]
Total stations are the primary survey instrument used in mining surveying.
A total station is used to record the absolute location of the tunnel walls, ceilings (backs), and floors, as the drifts of an underground mine are driven. The recorded data are then downloaded into a CAD program and compared to the designed layout of the tunnel.
The survey party installs control stations at regular intervals. These are small steel plugs installed in pairs in holes drilled into walls or the back. For wall stations, two plugs are installed in opposite walls, forming a line perpendicular to the drift. For back stations, two plugs are installed in the back, forming a line parallel to the drift.
A set of plugs can be used to locate the total station set up in a drift or tunnel by processing measurements to the plugs by intersection and resection.
Total stations have become the highest standard for most forms of construction layout.[ according to whom? ]
They are most often used in the X and Y axes to lay out the locations of penetrations out of the underground utilities into the foundation, between floors of a structure, as well as roofing penetrations.
Because more commercial and industrial construction jobs have become centered around building information modeling (BIM), the coordinates for almost every pipe, conduit, duct and hanger support are available with digital precision.[ clarification needed ] The application of communicating a virtual model to a tangible construction potentially eliminates labor costs related to moving poorly measured systems, as well as time spent laying out these systems in the midst of a full-blown construction job in progress.[ citation needed ]
Meteorologists also use total stations to track weather balloons for determining upper-level winds. With the average ascent rate of the weather balloon known or assumed, the change in azimuth and elevation readings provided by the total station as it tracks the weather balloon over time are used to compute the wind speed and direction at different altitudes. Additionally, the total station is used to track ceiling balloons to determine the height of cloud layers. Such upper-level wind data is often used for aviation weather forecasting and rocket launches.
Surveying or land surveying is the technique, profession, art, and science of determining the terrestrial two-dimensional or three-dimensional positions of points and the distances and angles between them. These points are usually on the surface of the Earth, and they are often used to establish maps and boundaries for ownership, locations, such as the designated positions of structural components for construction or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.
In trigonometry and geometry, triangulation is the process of determining the location of a point by forming triangles to the point from known points.
A theodolite is a precision optical instrument for measuring angles between designated visible points in the horizontal and vertical planes. The traditional use has been for land surveying, but it is also used extensively for building and infrastructure construction, and some specialized applications such as meteorology and rocket launching.
An inclinometer or clinometer is an instrument used for measuring angles of slope, elevation, or depression of an object with respect to gravity's direction. It is also known as a tilt indicator, tilt sensor, tilt meter, slope alert, slope gauge, gradient meter, gradiometer, level gauge, level meter, declinometer, and pitch & roll indicator. Clinometers measure both inclines and declines using three different units of measure: degrees, percentage points, and topos. The astrolabe is an example of an inclinometer that was used for celestial navigation and location of astronomical objects from ancient times to the Renaissance.
Levelling or leveling is a branch of surveying, the object of which is to establish or verify or measure the height of specified points relative to a datum. It is widely used in geodesy and cartography to measure vertical position with respect to a vertical datum, and in construction to measure height differences of construction artifacts.
Aerial survey is a method of collecting geomatics or other imagery data using airplanes, helicopters, UAVs, balloons, or other aerial methods. Typical data collected includes aerial photography, Lidar, remote sensing and geophysical data. It can also refer to a chart or map made by analyzing a region from the air. Aerial survey should be distinguished from satellite imagery technologies because of its better resolution, quality, and resistance to atmospheric conditions that can negatively impact and obscure satellite observation. Today, aerial survey is often recognized as a synonym for aerophotogrammetry, a part of photogrammetry where the camera is airborne. Measurements on aerial images are provided by photogrammetric technologies and methods.
The term Jacob's staff is used to refer to several things, also known as cross-staff, a ballastella, a fore-staff, a ballestilla, or a balestilha. In its most basic form, a Jacob's staff is a stick or pole with length markings; most staffs are much more complicated than that, and usually contain a number of measurement and stabilization features. The two most frequent uses are:
A level is an optical instrument used to establish or verify points in the same horizontal plane in a process known as levelling. It is used in conjunction with a levelling staff to establish the relative height or levels of objects or marks. It is widely used in surveying and construction to measure height differences and to transfer, measure, and set heights of known objects or marks.
Stadiametric rangefinding, or the stadia method, is a technique of measuring distances with a telescopic instrument. The term stadia comes from a Greek unit of length Stadion which was the typical length of a sports stadium of the time. Stadiametric rangefinding is used for surveying and in the telescopic sights of firearms, artillery pieces, or tank guns, as well as some binoculars and other optics. It is still widely used in long-range military sniping, but in many professional applications it is being replaced with microwave, infrared, or laser rangefinding methods. Although much easier to use, electronic rangefinders can give away the shooter's position to a well-equipped adversary, and the need for accurate range estimation has existed for much longer than electronic rangefinders small and rugged enough to be suitable for military use.
A dioptra is a classical astronomical and surveying instrument, dating from the 3rd century BC. The dioptra was a sighting tube or, alternatively, a rod with a sight at both ends, attached to a stand. If fitted with protractors, it could be used to measure angles.
Tacheometry is a system of rapid surveying, by which the horizontal and vertical positions of points on the Earth's surface relative to one another are determined using a tacheometer. It is used without a chain or tape for distance measurement and without a separate levelling instrument for relative height measurements.
A cave survey is a map of all or part of a cave system, which may be produced to meet differing standards of accuracy depending on the cave conditions and equipment available underground. Cave surveying and cartography, i.e. the creation of an accurate, detailed map, is one of the most common technical activities undertaken within a cave and is a fundamental part of speleology. Surveys can be used to compare caves to each other by length, depth and volume, may reveal clues on speleogenesis, provide a spatial reference for other areas of scientific study and assist visitors with route-finding.
A circumferentor, or surveyor's compass, is an instrument used in surveying to measure horizontal angles. It was superseded by the theodolite in the early 19th century.
The Wild (Heerbrugg) company (pronounced "vilt") was founded in 1921 in Switzerland. The company manufactured optical instruments, such as surveying instruments, microscopes and instruments for photogrammetry among others. The company changed its name several times, first being known as "Heinrich Wild, Werkstätte für Feinmechanik und Optik", then "Verkaufs-Aktiengesellschaft Heinrich Wild's Geodätische Instrumente", later "Wild Heerbrugg AG", later "Wild-Leitz". The company was linked with Leica in 1989, then it became part of Leica Holding B.V. Its subsidiary Leica Geosystems AG became part of the Swedish Hexagon AB Group of companies in 2005.
Sokkia Co., Ltd. was founded in 1920 as Sokkisha in Japan. It makes measurement instruments for the surveying, construction and industrial measurement industries. In 2008 Sokkia was acquired by Topcon, but still maintains a separate brand.
An Abney level and clinometer is an instrument used in surveying which consists of a fixed sighting tube, a movable spirit level that is connected to a pointing arm, and a protractor scale. An internal mirror allows the user to see the bubble in the level while sighting a distant target. It can be used as a hand-held instrument or mounted on a Jacob's staff for more precise measurement, and it is small enough to carry in a coat pocket.
Position resection and intersection are methods for determining an unknown geographic position by measuring angles with respect to known positions. In resection, the one point with unknown coordinates is occupied and sightings are taken to the known points; in intersection, the two points with known coordinates are occupied and sightings are taken to the unknown point.
Construction surveying or building surveying is to provide dimensional control for all stages of construction work, including the stake out of reference points and markers that will guide the construction of new structures such as roads, rail, or buildings. These markers are usually staked out according to a suitable coordinate system selected for the project.
In surveying, free stationing is a method of determining a location of one unknown point in relation to known points. There is a zero point of reference called a total station. The instrument can be freely positioned so that all survey points are at a suitable sight from the instrument. When setting up the total station on a known point, it is often not possible to see all survey points of interest. When performing a resection with the total station, bearings and distances are measured to at least two known points of a control network. With use of a handheld computer, recorded data can be related to local polar coordinates, defined by the horizontal circle of the total station. By a geometric transformation, these polar coordinates are transformed to the coordinate system of the control network. Error can be distributed by least squares adjustment. Upon completion of observations and calculations, a coordinate is produced, and the position and orientation of the total station in relation to where the control network is established.