Desirable difficulty

Last updated

A desirable difficulty is a learning task that requires a considerable but desirable amount of effort, thereby improving long-term performance. It is also described as a learning level achieved through a sequence of learning tasks and feedback that lead to enhanced learning and transfer. [1]

Contents

As the name suggests, desirable difficulties should be highly desirable and increasingly challenging. Research suggests that while difficult tasks might slow down learning initially, the long-term benefits are greater than with easy tasks. [2] However, to be desirable, the tasks must also be achievable.

Background

Many tasks give the illusion of learning because they are easily completed. For example, re-reading notes or a textbook is a common learning tactic that has been proven to be less beneficial than using flashcards. [2] A student may feel like they are learning while re-reading due to the fact that the words are more familiar during the second or third read. However, this does not mean that the material is being processed, internalized, and learned as they may believe. Flashcards on the other hand, require the student to actively recall the information. This is a desirable difficulty because it requires more effort and forces the student to do more complex processing. At first, learning with desirable difficulties may take longer and the student may not feel as confident, but over time knowledge will be retained better. [2]

The term was first coined by Robert A. Bjork in 1994. [3] The UCLA psychologist introduced the concept as an experience that makes learning more difficult, allowing students to form stronger connections. [4] The idea is that, as the task difficulty increases, learning also increases due to the way it challenges the learner to achieve his optimum performance. [5] The concept grew out of Bjork's work with members of the Bjork Learning and Forgetting Lab and Cogfog. [6]

Requirements

To determine whether a difficulty is desirable, use the following three guidelines: [2]

  1. The processing at encoding should be the same as the processing at retrieval.
  2. The processing at encoding should be the same as the processing during practice.
  3. The task must be able to be accomplished. Too difficult a task may dissuade the learner and prevent full processing.

A model called the challenge point framework can also be used. [7] It is based on the relationship between task difficulty and the ability or the knowledge and skills of the learner. [5] This framework identifies the so-called optimal challenge point (OCP), where the learner obtains the greatest potential for learning. [7]

Research and examples

Researchers have experimented with various methods of learning. A common theme between the methods that have proven to be most beneficial is that they all present difficulties and challenges to the learner. [8] Compared with traditional easier learning methods, they appear to make learning slower. The traditional easy tasks often show better temporary performance effects, and these are confused for more permanent effects. [9] While this is somewhat counterintuitive, studies show that difficulties are better for increased performance in the long run. [10] The following are examples of training tasks that are desirably difficult.

Retrieval practice

Also known as the testing effect, retrieval practice uses testing as a training tactic. Performance can be improved by devoting some of the learning period to testing by trying to recall the to-be-learned information. An example of this is flashcards, where a student will try to answer what is on the back of a card based on what is written on the front of a card (i.e. a word on the front and its definition on the back). One study found that increasing the pile of flashcards to study at one time, and thereby increasing the difficulty, caused students to perform better on their tests. [11] For best results, feedback is key; the learner should receive feedback on their performance and learn the correct answers. [12]

Delayed feedback

To improve, students need to receive feedback on their work; feedback could consist of the correct answers, a grade, comments, etc. While feedback is essential, a surprising result found is that delaying feedback is better than receiving immediate feedback. [12] This is contingent on the delayed feedback being guaranteed. Notably, this claim is highly improbable, and is inconsistent with a wealth of research highlighting the benefits of immediate feedback. [13] Feedback in any form is better than no feedback at all.

Some experts note that, presently, the mechanisms that can precisely cause desirable difficulty effect are not yet well understood. [14]

Spacing and interleaving

The spacing effect consists of repetitive studying while ensuring that there is a delay between repetitions. If this delay is created through studying another task or subject, the method is known as interleaving. An example of this is reviewing notes from previous weeks every week up until the final. This will space out the review sessions instead of cramming and increase the amount of information that is committed to long-term memory. Spacing and interleaving has also been found to increase long-term memorization of English syntax. [15] One study found that early elementary school students performed better through distributed learning over time, as opposed to those who were taught using clumped, or massed studying schedules . [16]

Furthermore studies have found that when difficult students are studying difficult material they tend to gravitate towards spaced learning. [17] This was theorized to have happened because of a prior knowledge in the students that spaced learning would help them more deeply understand the subject. [18]

Combined techniques

Combining desirably difficult techniques in the right ways can be beneficial. For example, the 3R (Read/Recite/Review) technique involves reading a piece of text, reciting the text without looking, and then reviewing the text again. In one experiment, students who used this task performed better than those who simply reread the text. [2] This method takes advantage of two desirable difficulties. The first is that recalling what is written in the text takes considerably more effort than rereading. The second is that during the review stage, students are actively looking for feedback rather than passively receiving feedback in other ways.

Sans forgetica typeface

Sans forgetica is a minor version of Helvetica sans-serif intended as a desirable difficulty learning aid for competent readers. [19] However, there are scientific studies that say sans forgetica has no positive effects on actual performance. [20]

Implications

For students

Students can easily incorporate these techniques into their everyday studying habits to increase their recall. For example, instead of just rereading the material, testing oneself with flashcards will harness the testing effect. Students can also use the spacing effect and interleaving while studying. They can spend time on one subject, then take a break by studying another subject, before returning to the original subject again. This enforces interleaving by mixing several subjects while also spacing out studying over different intervals.

For instructors

Teachers and professors can utilize spacing by including problems on past topics throughout different homework assignments. They can also utilize the test-a-day method to enforce the testing effect, by requiring students to consistently recall information. Delaying feedback on tests and quizzes is also beneficial, but as long as it is not delayed so long that the students do not read the feedback. One researcher recommends using tests as learning events instead of presentations. When a student is allowed to recall for themselves the information needed, rather than have it told to them, or have to look it up, they learn the material more concretely. [21]

One issue with a majority of current research is that it occurs over a short time span such as a few hours to a couple of days; however, teachers and professors are more interested in ensuring the material they teach remains long term. Through the study of people's recollection of high school Spanish words, Harry Bahrick was able to show that a considerable portion of information learned in a particular class is remembered throughout a person's life and is known as permastore. [3] [2] Bahrick found that spaced post-study sessions promoted permastore for Spanish vocabulary, and likewise, Landauer and Ainslie found that the testing effect increased scores on the information over a year later. [2] The long-term effect over decades is still unknown and being researched.

Related Research Articles

<span class="mw-page-title-main">Spaced repetition</span> Learning technique performed with flashcards

Spaced repetition is an evidence-based learning technique that is usually performed with flashcards. Newly introduced and more difficult flashcards are shown more frequently, while older and less difficult flashcards are shown less frequently in order to exploit the psychological spacing effect. The use of spaced repetition has been proven to increase the rate of learning.

Recall in memory refers to the mental process of retrieval of information from the past. Along with encoding and storage, it is one of the three core processes of memory. There are three main types of recall: free recall, cued recall and serial recall. Psychologists test these forms of recall as a way to study the memory processes of humans and animals. Two main theories of the process of recall are the two-stage theory and the theory of encoding specificity.

Memorization is the process of committing something to memory. It is a mental process undertaken in order to store in memory for later recall visual, auditory, or tactical information.

<span class="mw-page-title-main">Active learning</span> Educational technique

Active learning is "a method of learning in which students are actively or experientially involved in the learning process and where there are different levels of active learning, depending on student involvement." Bonwell & Eison (1991) states that "students participate [in active learning] when they are doing something besides passively listening." According to Hanson and Moser (2003) using active teaching techniques in the classroom can create better academic outcomes for students. Scheyvens, Griffin, Jocoy, Liu, & Bradford (2008) further noted that "by utilizing learning strategies that can include small-group work, role-play and simulations, data collection and analysis, active learning is purported to increase student interest and motivation and to build students ‘critical thinking, problem-solving and social skills". In a report from the Association for the Study of Higher Education, authors discuss a variety of methodologies for promoting active learning. They cite literature that indicates students must do more than just listen in order to learn. They must read, write, discuss, and be engaged in solving problems. This process relates to the three learning domains referred to as knowledge, skills and attitudes (KSA). This taxonomy of learning behaviors can be thought of as "the goals of the learning process." In particular, students must engage in such higher-order thinking tasks as analysis, synthesis, and evaluation.

<span class="mw-page-title-main">Flashcard</span> Tool for systematic learning

A flashcard or flash card is a card bearing information on both sides, which is intended to be used as an aid in memorization. Each flashcard typically bears a question or definition on one side and an answer or target term on the other. Flashcards are often used to memorize vocabulary, historical dates, formulae or any subject matter that can be learned via a question-and-answer format. Flashcards can be virtual, or physical.

The interference theory is a theory regarding human memory. Interference occurs in learning. The notion is that memories encoded in long-term memory (LTM) are forgotten and cannot be retrieved into short-term memory (STM) because either memory could interfere with the other. There is an immense number of encoded memories within the storage of LTM. The challenge for memory retrieval is recalling the specific memory and working in the temporary workspace provided in STM. Retaining information regarding the relevant time of encoding memories into LTM influences interference strength. There are two types of interference effects: proactive and retroactive interference.

The spacing effect demonstrates that learning is more effective when study sessions are spaced out. This effect shows that more information is encoded into long-term memory by spaced study sessions, also known as spaced repetition or spaced presentation, than by massed presentation ("cramming").

<span class="mw-page-title-main">Testing effect</span> Memory effect in educational psychology

The testing effect suggests long-term memory is increased when part of the learning period is devoted to retrieving information from memory. It is different from the more general practice effect, defined in the APA Dictionary of Psychology as "any change or improvement that results from practice or repetition of task items or activities."

Metacognition is an awareness of one's thought processes and an understanding of the patterns behind them. The term comes from the root word meta, meaning "beyond", or "on top of". Metacognition can take many forms, such as reflecting on one's ways of thinking and knowing when and how to use particular strategies for problem-solving. There are generally two components of metacognition: (1) knowledge about cognition and (2) regulation of cognition. A metacognitive model differs from other scientific models in that the creator of the model is per definition also enclosed within it. Scientific models are often prone to distancing the observer from the object or field of study whereas a metacognitive model in general tries to include the observer in the model.

Overlearning refers to practicing newly acquired skills beyond the point of initial mastery. The term is also often used to refer to the pedagogical theory that this form of practice leads to automaticity or other beneficial consequences.

<span class="mw-page-title-main">Study skills</span> Approaches applied to learning

Study skills or study strategies are approaches applied to learning. Study skills are an array of skills which tackle the process of organizing and taking in new information, retaining information, or dealing with assessments. They are discrete techniques that can be learned, usually in a short time, and applied to all or most fields of study. More broadly, any skill which boosts a person's ability to study, retain and recall information which assists in and passing exams can be termed a study skill, and this could include time management and motivational techniques.

The generation effect is a phenomenon whereby information is better remembered if it is generated from one's own mind rather than simply read. Researchers have struggled to account for why the generated information is better recalled than read information, but no single explanation has been sufficient to explain everything.

Free recall is a common task in the psychological study of memory. In this task, participants study a list of items on each trial, and then are prompted to recall the items in any order. Items are usually presented one at a time for a short duration, and can be any of a number of nameable materials, although traditionally, words from a larger set are chosen. The recall period typically lasts a few minutes, and can involve spoken or written recall. The standard test involves the recall period starting immediately after the final list item; this can be referred to as immediate free recall (IFR) to distinguish it from delayed free recall (DFR). In delayed free recall, there is a short distraction period between the final list item and the start of the recall period. Both IFR and DFR have been used to test certain effects that appear during recall tests, such as the primacy effect and recency effect.

Studying in an educational context refers to the process of gaining mastery of a certain area of information. Study software then is any program which allows students to improve the time they spend thinking about, learning and studying that information.

The split-attention effect is a learning effect inherent within some poorly designed instructional materials. It is apparent when the same modality is used for various types of information within the same display. Users must split their attention between the materials, for example, an image and text, to understand the information being conveyed. The split-attention effect can occur physically through visual and auditory splits and temporally when time distances two pieces of information that should be connected.

In the study of learning and memory, varied practice refers to the use of a training schedule that includes frequent changes of task so that the performer is constantly confronting novel instantiations of the to-be-learned information.

<span class="mw-page-title-main">Memory improvement</span> Act of improving ones memory

Memory improvement is the act of enhancing one's memory. Research on improving memory is driven by amnesia, age-related memory loss, and people’s desire to enhance their memory. Research involved in memory improvement has also worked to determine what factors influence memory and cognition. There are many different techniques to improve memory some of which include cognitive training, psychopharmacology, diet, stress management, and exercise. Each technique can improve memory in different ways.

Distributed practice is a learning strategy, where practice is broken up into a number of short sessions over a longer period of time. Humans and other animals learn items in a list more effectively when they are studied in several sessions spread out over a long period of time, rather than studied repeatedly in a short period of time, a phenomenon called the spacing effect. The opposite, massed practice, consists of fewer, longer training sessions and is generally a less effective method of learning. For example, when studying for an exam, dispersing your studying more frequently over a larger period of time will result in more effective learning than intense study the night before.

Seductive details are often used in textbooks, lectures, slideshows, and other forms of educational content to make a course more interesting or interactive. Seductive details can take the form of text, animations, photos, illustrations, sounds or music and are by definition: (1) interesting and (2) not directed toward the learning objectives of a lesson. John Dewey, in 1913, first referred to this as "fictitious inducements to attention." While illustrated text can enhance comprehension, illustrations that are not relevant can lead to poor learning outcomes. Since the late 1980s, many studies in the field of educational psychology have shown that the addition of seductive details results in poorer retention of information and transfer of learning. Thalheimer conducted a meta-analysis that found, overall, a negative impact for the inclusion of seductive details such as text, photos or illustrations, and sounds or music in learning content. More recently, a 2020 paper found a similar effect for decorative animations This reduction to learning is called the seductive details effect. There have been criticisms of this theory. Critics argue that seductive details do not always impede understanding and that seductive details can sometimes be motivating for learners.

The forward testing effect, also known as test potentiated new learning, is a psychological learning theory which suggests that testing old information can improve learning of new information. Unlike traditional learning theories in educational psychology which have established the positive effect testing has when later attempting to retrieve the same information, the forward testing effect instead suggests that the testing experience itself possesses unique benefits which enhance the learning of new information. This memory effect is also distinct from the 'practice effect' which typically refers to an observed improvement which results from repetition and restudy, as the testing itself is considered as the catalyst for improved recall. Instead, this theory suggests that testing serves not only as a tool for assessment but as a learning tool which can aid in memory recall. The forward testing effect indicates that educators should encourage students to study using testing techniques rather than restudying information repeatedly.

References

  1. Derks, Daantje; Bakker, Arnold (2013). The Psychology of Digital Media at Work. East Sussex: Psychology Press. p. 125. ISBN   9781848720749.
  2. 1 2 3 4 5 6 7 Marsh, E. J.; Butler, A. C. (2014). Memory in educational settings. Chapter in D. Reisberg (Ed.) Oxford Handbook of Cognitive Psychology. pp. 299–317.
  3. 1 2 Bjork, R.A. (1994). "Institutional Impediments to Effective Training". Learning, Remembering, Believing: Enhancing Human Performance.
  4. Wentzel, Arnold (2019). Teaching Complex Ideas: How to Translate Your Expertise into Great Instruction. New York: Routledge. p. 159. ISBN   9781138482364.
  5. 1 2 Hodges, Nicola J.; Williams, A. Mark (2019). Skill Acquisition in Sport: Research, Theory and Practice. Oxon: Routledge. ISBN   978-1-351-18973-6.
  6. "Research | Bjork Learning and Forgetting Lab". bjorklab.psych.ucla.edu. Retrieved February 25, 2024.
  7. 1 2 Hodges, Nicola; Lohse, Keith; Wilson, Andrew; Lim, Shannon; Mulligan, Desmond (October 2014). "Exploring the Dynamic Nature of Contextual Interference: Previous Experience Affects Current Practice But Not Learning". Journal of Motor Behavior. 46 (6): 455–467. doi:10.1080/00222895.2014.947911. PMID   25226441. S2CID   21952759.
  8. Bjork, R. A. (1994). Memory and metamemory considerations in the training of human beings. In J. Metcalfe and A. Shimamura (Eds.), Metacognition: Knowing about knowing. pp. 185–205.
  9. Bjork, Robert A.; Schmidt, Richard A. (1992). "New Conceptualizations of Practice: Common Principles in Three Paradigms Suggest New Concepts for Training". American Psychological Society.
  10. ""Desirable Difficulties" can Lead to Deeper Learning and Better Retention | Tomorrow's Professor Postings". tomprof.stanford.edu. Retrieved November 10, 2021.
  11. Kornell, Nate (2009). "Optimising learning using flashcards: Spacing is more effective than cramming". Applied Cognitive Psychology. 23 (9): 1297–1317. doi:10.1002/acp.1537. ISSN   1099-0720.
  12. 1 2 Robert A. Bjork and, Nicholas C. Soderstrom. "Learning vs. Performance" (PDF).
  13. Corbett, Albert T; Anderson, John R (2001). "Locus of feedback control in computer-based tutoring: Impact on learning rate, achievement and attitudes" (PDF). SIGCHI: 245–252. Retrieved July 19, 2020.
  14. Swanwick, Tim; Forrest, Kirsty; O'Brien, Bridget C. (2018). Understanding Medical Education: Evidence, Theory, and Practice, Third Edition. Hoboken, NJ: John Wiley & Sons. p. 28. ISBN   978-1-119-37382-7.
  15. Bird, Steve (October 2010). "Effects of distributed practice on the acquisition of second language English syntax". Applied Psycholinguistics. 31 (4): 635–650. doi:10.1017/S0142716410000172. ISSN   1469-1817. S2CID   144218075.
  16. Vlach, Haley A.; Sandhofer, Catherine M. (May 2012). "Distributing Learning Over Time: The Spacing Effect in Children's Acquisition and Generalization of Science Concepts". Child Development. 83 (4): 1137–1144. doi:10.1111/j.1467-8624.2012.01781.x. ISSN   0009-3920. PMC   3399982 . PMID   22616822.
  17. Toppino, Thomas C.; Cohen, Michael S.; Davis, Meghan L.; Moors, Amy C. (September 2009). "Metacognitive control over the distribution of practice: when is spacing preferred?". Journal of Experimental Psychology: Learning, Memory, and Cognition. 35 (5): 1352–1358. doi:10.1037/a0016371. ISSN   0278-7393. PMID   19686028.
  18. Toppino, Thomas C.; Cohen, Michael S. (November 2010). "Metacognitive control and spaced practice: clarifying what people do and why". Journal of Experimental Psychology: Learning, Memory, and Cognition. 36 (6): 1480–1491. doi:10.1037/a0020949. ISSN   1939-1285. PMID   20822306.
  19. RMIT News release 2018/10/03: Sans Forgetica: new typeface designed to help students study
  20. Taylor, Andrea; Sanson, Mevagh; Burnell, Ryan; Wade, Kimberley A.; Garry, Maryanne (2020). "Disfluent difficulties are not desirable difficulties: The (Lack of) effect of Sans Forgetica on memory". Memory. 28 (7): 850–857. doi:10.1080/09658211.2020.1758726. PMID   32364830. S2CID   218504416.
  21. Bjork, Elizabeth and Robert (November 2009). "Making Things Hard on Yourself, But in a Good Way: Creating Desirable Difficulties to Enhance Learning" (PDF).