Biological thermodynamics

Last updated

Biological thermodynamics(Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy. The nonequilibrium thermodynamic state of living organisms is ensured by the continuous alternation of cycles of controlled biochemical reactions, accompanied by the release and absorption of energy, which provides them with the properties of phenotypic adaptation and a number of others.

Contents

History

In 1935, the first scientific work devoted to the thermodynamics of biological systems was published - the book of the Hungarian-Russian theoretical biologist Erwin S. Bauer (1890-1938) "Theoretical Biology"[]. E. Bauer formulated the "Universal Law of Biology" in the following edition: "All and only living systems are never in equilibrium and perform constant work at the expense of their free energy against the equilibrium required by the laws of physics and chemistry under existing external conditions". This law can be considered the 1st law of thermodynamics of biological systems.

In 1957, German-British physician and biochemist Hans Krebs   and British-American biochemist Hans Kornberg [] in the book "Energy Transformations in Living Matter" first described the thermodynamics of biochemical reactions. In their works, H. Krebs and Hans Kornberg showed how in living cells, as a result of biochemical reactions, adenosine triphosphate (ATP) is synthesized from food, which is the main source of energy of living organisms (the Krebs–Kornberg cycle).

In 2006, the Israeli-Russian scientist Boris Dobroborsky (1945) published the book "Thermodynamics of Biological Systems"[], in which the general principles of functioning of living organisms from the perspective of nonequilibrium thermodynamics were formulated for the first time and the nature and properties of their basic physiological functions were explained.

The main provisions of the theory of thermodynamics of biological systems

A living organism is a thermodynamic system of an active type (in which energy transformations occur), striving for a stable nonequilibrium thermodynamic state. The nonequilibrium thermodynamic state in plants is achieved by continuous alternation of phases of solar energy consumption as a result of photosynthesis and subsequent biochemical reactions, as a result of which adenosine triphosphate (ATP) is synthesized in the daytime, and the subsequent release of energy during the splitting of ATP mainly in the dark. Thus, one of the conditions for the existence of life on Earth is the alternation of light and dark time of day.

In animals, the processes of alternating cycles of biochemical reactions of ATP synthesis and cleavage occur automatically. Moreover, the processes of alternating cycles of biochemical reactions at the levels of organs, systems and the whole organism, for example, respiration, heart contractions and others occur with different periods and externally manifest themselves in the form of biorhythms. At the same time, the stability of the nonequilibrium thermodynamic state, optimal under certain conditions of vital activity, is provided by feedback systems through the regulation of biochemical reactions in accordance with the Lyapunov stability theory. This principle of vital activity was formulated by B. Dobroborsky in the form of the 2nd law of thermodynamics of biological systems in the following wording:

The stability of the nonequilibrium thermodynamic state of biological systems is ensured by the continuous alternation of phases of energy consumption and release through controlled reactions of synthesis and cleavage of ATP.

The following consequences follow from this law:

1. In living organisms, no process can occur continuously, but must alternate with the opposite direction: inhalation with exhalation, work with rest, wakefulness with sleep, synthesis with cleavage, etc.

2. The state of a living organism is never static, and all its physiological and energy parameters are always in a state of continuous fluctuations relative to the average values both in frequency and amplitude.

This principle of functioning of living organisms provides them with the properties of phenotypic adaptation and a number of others.

See also

Related Research Articles

<span class="mw-page-title-main">Energy</span> Property that makes changes possible

In physics, energy is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of heat and light. Energy is a conserved quantity—the law of conservation of energy states that energy can be converted in form, but not created or destroyed. The unit of measurement for energy in the International System of Units (SI) is the joule (J).

<span class="mw-page-title-main">Metabolism</span> Set of chemical reactions in organisms

Metabolism is the set of life-sustaining chemical reactions in organisms. The three main functions of metabolism are: the conversion of the energy in food to energy available to run cellular processes; the conversion of food to building blocks for proteins, lipids, nucleic acids, and some carbohydrates; and the elimination of metabolic wastes. These enzyme-catalyzed reactions allow organisms to grow and reproduce, maintain their structures, and respond to their environments. The word metabolism can also refer to the sum of all chemical reactions that occur in living organisms, including digestion and the transportation of substances into and between different cells, in which case the above described set of reactions within the cells is called intermediary metabolism.

<span class="mw-page-title-main">Metabolic pathway</span> Linked series of chemical reactions occurring within a cell

In biochemistry, a metabolic pathway is a linked series of chemical reactions occurring within a cell. The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical reactions catalyzed by enzymes. In most cases of a metabolic pathway, the product of one enzyme acts as the substrate for the next. However, side products are considered waste and removed from the cell. These enzymes often require dietary minerals, vitamins, and other cofactors to function.

<span class="mw-page-title-main">Thermodynamics</span> Physics of heat, work, and temperature

Thermodynamics is a branch of physics that deals with heat, work, and temperature, and their relation to energy, entropy, and the physical properties of matter and radiation. The behavior of these quantities is governed by the four laws of thermodynamics which convey a quantitative description using measurable macroscopic physical quantities, but may be explained in terms of microscopic constituents by statistical mechanics. Thermodynamics applies to a wide variety of topics in science and engineering, especially physical chemistry, biochemistry, chemical engineering and mechanical engineering, but also in other complex fields such as meteorology.

<span class="mw-page-title-main">Adenosine diphosphate</span> Chemical compound

Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose. The diphosphate group of ADP is attached to the 5’ carbon of the sugar backbone, while the adenine attaches to the 1’ carbon.

<span class="mw-page-title-main">Cellular respiration</span> Process to convert glucose to ATP in cells

Cellular respiration is the process by which biological fuels are oxidized in the presence of an inorganic electron acceptor, such as oxygen, to drive the bulk production of adenosine triphosphate (ATP), which contains energy. Cellular respiration may be described as a set of metabolic reactions and processes that take place in the cells of organisms to convert chemical energy from nutrients into ATP, and then release waste products.

<span class="mw-page-title-main">Hans Krebs (biochemist)</span> British biochemist (1900–1981)

Sir Hans Adolf Krebs, FRS was a German-British biologist, physician and biochemist. He was a pioneer scientist in the study of cellular respiration, a biochemical process in living cells that extracts energy from food and oxygen and makes it available to drive the processes of life. He is best known for his discoveries of two important sequences of chemical reactions that take place in the cells of nearly all organisms, including humans, other than anaerobic microorganisms, namely the citric acid cycle and the urea cycle. The former, often eponymously known as the "Krebs cycle", is the sequence of metabolic reactions that allows cells of oxygen-respiring organisms to obtain far more ATP from the food they consume than anaerobic processes such as glycolysis can supply; and its discovery earned Krebs a Nobel Prize in Physiology or Medicine in 1953. With Hans Kornberg, he also discovered the glyoxylate cycle, a slight variation of the citric acid cycle found in plants, bacteria, protists, and fungi.

<span class="mw-page-title-main">Non-equilibrium thermodynamics</span> Branch of thermodynamics

Non-equilibrium thermodynamics is a branch of thermodynamics that deals with physical systems that are not in thermodynamic equilibrium but can be described in terms of macroscopic quantities that represent an extrapolation of the variables used to specify the system in thermodynamic equilibrium. Non-equilibrium thermodynamics is concerned with transport processes and with the rates of chemical reactions.

<span class="mw-page-title-main">Peter D. Mitchell</span> British biochemist

Peter Dennis Mitchell FRS was a British biochemist who was awarded the 1978 Nobel Prize for Chemistry for his theory of the chemiosmotic mechanism of ATP synthesis.

Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study of thousands of different cellular processes such as cellular respiration and the many other metabolic and enzymatic processes that lead to production and utilization of energy in forms such as adenosine triphosphate (ATP) molecules. That is, the goal of bioenergetics is to describe how living organisms acquire and transform energy in order to perform biological work. The study of metabolic pathways is thus essential to bioenergetics.

<span class="mw-page-title-main">Photophosphorylation</span> Biochemical process in photosynthesis

In the process of photosynthesis, the phosphorylation of ADP to form ATP using the energy of sunlight is called photophosphorylation. Cyclic photophosphorylation occurs in both aerobic and anaerobic conditions, driven by the main primary source of energy available to living organisms, which is sunlight. All organisms produce a phosphate compound, ATP, which is the universal energy currency of life. In photophosphorylation, light energy is used to pump protons across a biological membrane, mediated by flow of electrons through an electron transport chain. This stores energy in a proton gradient. As the protons flow back through an enzyme called ATP synthase, ATP is generated from ADP and inorganic phosphate. ATP is essential in the Calvin cycle to assist in the synthesis of carbohydrates from carbon dioxide and NADPH.

<span class="mw-page-title-main">Robert A. Alberty</span> American chemist (1921–2014)

Robert Arnold Alberty (1921–2014) was an American biophysical chemist, professor emeritus at the Massachusetts Institute of Technology, and a member of the National Academy of Sciences.

<span class="mw-page-title-main">Hans Kornberg</span> British-American biochemist (1928–2019)

Sir Hans Leo Kornberg, FRS was a British-American biochemist. He was Sir William Dunn Professor of Biochemistry in the University of Cambridge from 1975 to 1995, and Master of Christ's College, Cambridge from 1982 to 1995.

Research concerning the relationship between the thermodynamic quantity entropy and both the origin and evolution of life began around the turn of the 20th century. In 1910, American historian Henry Adams printed and distributed to university libraries and history professors the small volume A Letter to American Teachers of History proposing a theory of history based on the second law of thermodynamics and on the principle of entropy.

<span class="mw-page-title-main">Reverse Krebs cycle</span>

The reverse Krebs cycle is a sequence of chemical reactions that are used by some bacteria to produce carbon compounds from carbon dioxide and water by the use of energy-rich reducing agents as electron donors.

<span class="mw-page-title-main">History of biochemistry</span>

The history of biochemistry can be said to have started with the ancient Greeks who were interested in the composition and processes of life, although biochemistry as a specific scientific discipline has its beginning around the early 19th century. Some argued that the beginning of biochemistry may have been the discovery of the first enzyme, diastase, in 1833 by Anselme Payen, while others considered Eduard Buchner's first demonstration of a complex biochemical process alcoholic fermentation in cell-free extracts to be the birth of biochemistry. Some might also point to the influential work of Justus von Liebig from 1842, Animal chemistry, or, Organic chemistry in its applications to physiology and pathology, which presented a chemical theory of metabolism, or even earlier to the 18th century studies on fermentation and respiration by Antoine Lavoisier.

<span class="mw-page-title-main">Bioenergetic systems</span>

Bioenergetic systems are metabolic processes that relate to the flow of energy in living organisms. Those processes convert energy into adenosine triphosphate (ATP), which is the form suitable for muscular activity. There are two main forms of synthesis of ATP: aerobic, which uses oxygen from the bloodstream, and anaerobic, which does not. Bioenergetics is the field of biology that studies bioenergetic systems.

<span class="mw-page-title-main">Outline of cell biology</span> Overview of and topical guide to cell biology

The following outline is provided as an overview of and topical guide to cell biology:

Ervin Bauer was a Hungarian biologist.

This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms. It is intended as introductory material for novices; for more specific and technical definitions from sub-disciplines and related fields, see Glossary of cell biology, Glossary of genetics, Glossary of evolutionary biology, Glossary of ecology, Glossary of environmental science and Glossary of scientific naming, or any of the organism-specific glossaries in Category:Glossaries of biology.

References

1.    ^ Bauer E.S. (1935) “Theoretical Biology” M-L, VIEM Publishing House, 151 p. (Ru).

2.    ^ Alberty R (2004). "A short history of the thermodynamics of enzyme-catalyzed reactions". J Biol Chem. 279 (27): 27831–6. doi:10.1074/jbc.X400003200. PMID 15073189. Archived from the original on 2008-09-05. Retrieved 2007-03-04.

3.    ^ Dobroborsky B.S. (2006) “Thermodynamics of biological systems". St. Petersburg, Publishing House of the St. Petersburg State Medical Academy named after I.I. Mechnikov. 52 p. (Ru).

    Further reading