Plane strain compression test

Last updated
A schematic of the plane strain compression teston a metal bar Compressive strip.jpg
A schematic of the plane strain compression teston a metal bar

The plane strain compression test is a specialized test used on some materials ranging from metals [1] to soils. [2]

Contents

Metals

One variation of the test is also known as the Watts-Ford test. It is an engineering test, and is a particularly specialized way of determining some of the material characteristics of the metal being tested, and its specialization can be summarized by this quote:

The test is useful when the sheet pieces are too small for a tensile test of a balanced biaxial test. It can give stress-strain curves up to considerably higher strains than tensile tests. [3]

Plane-strain compression testing is typically used for measuring mechanical properties and for exploring microstructure development in the course of thermomechanical treatment. [4] During the test the specimen is placed between the punches and the constrain plates. When the upper punch is pushed down during the material test, the specimen is extended to horizontal directions. Friction between the tool and the specimen can be reduced by applying lubricants, such as graphite, MoS2, glass or PTFE(Teflon). [5]


The testing essentially consists of a thin metal bar being compressed by two equally wide compressive strips, which are located of opposite sides of the thin bar. Then, over a range of increasing loads on the bar, the compressive forces lead to the thickness of the metal bar being reduced. This change of thickness is then measured sequentially after each loading, and after some mathematics a stress-strain curve can be plotted.

The advantages of the Watts-Ford test are that it is convenient for testing thin sheets or strips, it is similar to a rolling process (in manufacturing analyses), frictional effects may be minimized, there is no 'barrelling' as would occur in a cylindrical compression test, and the plane strain deformation eases the analysis.

Stress-strain curve

The stress-strain curve is the relationship between the stress (force per unit area) and strain (resulting compression/stretching, known as deformation) that a particular material displays; [6] stress–strain curves of various materials differ widely, and different tensile tests conducted on the same material yield different results depending upon the temperature of the specimen and the speed of the loading. [6] When performing Watts-Ford tests, temperatures of the metal specimens will vary from 800-1100 °C and strain rates of (0.01- 10 s-1). [7]

Stress-strain curve Trekkromme.jpg
Stress-strain curve

Pressure

The average pressure on a unit of area of the contact surface between the punch and the specimen is expressed as: P= F/(wb), where F is force, w is the punch width, b is the specimen width. [4]

See also

Citations

  1. KOWALS, B (2000), "Development of a Computer Code for the Interpretation of Results of Hot Plane Strain Compression Tests", ISIJ International, 40 (12): 1230–1236, doi:10.2355/isijinternational.40.1230, S2CID   135691274 , retrieved 18 January 2021
  2. Tatsuoka, F (March 1986), "STRENGTH AND DEFORMATION CHARACTERISTICS OF SAND IN PLANE STRAIN COMPRESSION AT EXTREMELY LOW PRESSURES", Soils and Foundations, 26 (1): 65–84, doi:10.3208/sandf1972.26.65 , retrieved 18 January 2021
  3. Handbook of Metallurgical Process Design, By George E. Totten, Kiyoshi Funatani, Lin Xie, CRC Press
  4. 1 2 Drozd, K., Horsinka, J., KLIBER, J., ČERNÝ, M., OSTROUSHKO, D., & MAMUZIC, I. (January 2011). Study of development of strain in plane strain compression test. In Metal 2011.
  5. Yabe, Shintaro (14 October 2014), "Plane strain compression test and simple shear test of single crystal pure iron", Procedia Engineering, 11th International Conference on Technology of Plasticity, ICTP 2014, 81: 1342–1347, doi:10.1016/j.proeng.2014.10.154
  6. 1 2 "Stress–strain curve", Wikipedia, 2019-01-14, retrieved 2019-03-15
  7. "Processing of plane strain compression test results for investigation of AISI-304 stainless steel constitutive behavior". ResearchGate. Retrieved 2019-03-15.

Related Research Articles

<span class="mw-page-title-main">Stress (mechanics)</span> Physical quantity that expresses internal forces in a continuous material

In continuum mechanics, stress is a physical quantity that describes forces present during deformation. An object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo shortening. The greater the force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Stress has units of force per area, such as newtons per square meter (N/m2) or pascal (Pa).

<span class="mw-page-title-main">Stress–strain curve</span> Curve representing a materials response to applied forces

In engineering and materials science, a stress–strain curve for a material gives the relationship between stress and strain. It is obtained by gradually applying load to a test coupon and measuring the deformation, from which the stress and strain can be determined. These curves reveal many of the properties of a material, such as the Young's modulus, the yield strength and the ultimate tensile strength.

<span class="mw-page-title-main">Fracture</span> Split of materials or structures under stress

Fracture is the separation of an object or material into two or more pieces under the action of stress. The fracture of a solid usually occurs due to the development of certain displacement discontinuity surfaces within the solid. If a displacement develops perpendicular to the surface, it is called a normal tensile crack or simply a crack; if a displacement develops tangentially, it is called a shear crack, slip band or dislocation.

The field of strength of materials typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio. In addition, the mechanical element's macroscopic properties such as its length, width, thickness, boundary constraints and abrupt changes in geometry such as holes are considered.

<span class="mw-page-title-main">Compressive strength</span> Capacity of a material or structure to withstand loads tending to reduce size

In mechanics, compressive strength is the capacity of a material or structure to withstand loads tending to reduce size. In other words, compressive strength resists compression, whereas tensile strength resists tension. In the study of strength of materials, tensile strength, compressive strength, and shear strength can be analyzed independently.

Stress–strain analysis is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material.

<span class="mw-page-title-main">Buckling</span> Sudden change in shape of a structural component under load

In structural engineering, buckling is the sudden change in shape (deformation) of a structural component under load, such as the bowing of a column under compression or the wrinkling of a plate under shear. If a structure is subjected to a gradually increasing load, when the load reaches a critical level, a member may suddenly change shape and the structure and component is said to have buckled. Euler's critical load and Johnson's parabolic formula are used to determine the buckling stress of a column.

<span class="mw-page-title-main">Work hardening</span> Strengthening a material through plastic deformation

In materials science, work hardening, also known as strain hardening, is the strengthening of a metal or polymer by plastic deformation. Work hardening may be desirable, undesirable, or inconsequential, depending on the context.

<span class="mw-page-title-main">Residual stress</span> Stresses which remain in a solid material after the original cause is removed

In materials science and solid mechanics, residual stresses are stresses that remain in a solid material after the original cause of the stresses has been removed. Residual stress may be desirable or undesirable. For example, laser peening imparts deep beneficial compressive residual stresses into metal components such as turbine engine fan blades, and it is used in toughened glass to allow for large, thin, crack- and scratch-resistant glass displays on smartphones. However, unintended residual stress in a designed structure may cause it to fail prematurely.

<span class="mw-page-title-main">Fracture toughness</span> Stress intensity factor at which a cracks propagation increases drastically

In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.

In materials science, hardness is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion. In general, different materials differ in their hardness; for example hard metals such as titanium and beryllium are harder than soft metals such as sodium and metallic tin, or wood and common plastics. Macroscopic hardness is generally characterized by strong intermolecular bonds, but the behavior of solid materials under force is complex; therefore, hardness can be measured in different ways, such as scratch hardness, indentation hardness, and rebound hardness. Hardness is dependent on ductility, elastic stiffness, plasticity, strain, strength, toughness, viscoelasticity, and viscosity. Common examples of hard matter are ceramics, concrete, certain metals, and superhard materials, which can be contrasted with soft matter.

<span class="mw-page-title-main">Fracture (geology)</span> Geologic discontinuity feature, often a joint or fault

A fracture is any separation in a geologic formation, such as a joint or a fault that divides the rock into two or more pieces. A fracture will sometimes form a deep fissure or crevice in the rock. Fractures are commonly caused by stress exceeding the rock strength, causing the rock to lose cohesion along its weakest plane. Fractures can provide permeability for fluid movement, such as water or hydrocarbons. Highly fractured rocks can make good aquifers or hydrocarbon reservoirs, since they may possess both significant permeability and fracture porosity.

<span class="mw-page-title-main">Triaxial shear test</span>

A triaxial shear test is a common method to measure the mechanical properties of many deformable solids, especially soil and rock, and other granular materials or powders. There are several variations on the test.

<span class="mw-page-title-main">Split-Hopkinson pressure bar</span>

The split-Hopkinson pressure bar, named after Bertram Hopkinson, sometimes also called a Kolsky bar, is an apparatus for testing the dynamic stress–strain response of materials.

<span class="mw-page-title-main">Shear forming</span>

Shear forming, also referred as shear spinning, is similar to metal spinning. In shear spinning the area of the final piece is approximately equal to that of the flat sheet metal blank. The wall thickness is maintained by controlling the gap between the roller and the mandrel. In shear forming a reduction of the wall thickness occurs.

Material failure theory is an interdisciplinary field of materials science and solid mechanics which attempts to predict the conditions under which solid materials fail under the action of external loads. The failure of a material is usually classified into brittle failure (fracture) or ductile failure (yield). Depending on the conditions most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile.

<span class="mw-page-title-main">Tensile testing</span> Test procedure to determine mechanical properties of a specimen.

Tensile testing, also known as tension testing, is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength, breaking strength, maximum elongation and reduction in area. From these measurements the following properties can also be determined: Young's modulus, Poisson's ratio, yield strength, and strain-hardening characteristics. Uniaxial tensile testing is the most commonly used for obtaining the mechanical characteristics of isotropic materials. Some materials use biaxial tensile testing. The main difference between these testing machines being how load is applied on the materials.

Formability is the ability of a given metal workpiece to undergo plastic deformation without being damaged. The plastic deformation capacity of metallic materials, however, is limited to a certain extent, at which point, the material could experience tearing or fracture (breakage).

<span class="mw-page-title-main">Biaxial tensile testing</span>

Biaxial tensile testing is a versatile technique to address the mechanical characterization of planar materials. Typical materials tested in biaxial configuration include metal sheets, silicone elastomers, composites, thin films, textiles and biological soft tissues.