Barcol hardness test

Last updated

The Barcol hardness test characterizes the indentation hardness of materials through the depth of penetration of an indentor, loaded on a material sample and compared to the penetration in a reference material. The method is most often used for composite materials such as reinforced thermosetting resins or to determine how much a resin or plastic has cured. The test complements the measurement of glass transition temperature, as an indirect measure of the degree of cure of a composite. It is inexpensive and quick, and provides information on the cure throughout a part. [1]

Composite material material made from a combination of two or more dislike substances

A composite material is a material made from two or more constituent materials with significantly different physical or chemical properties that, when combined, produce a material with characteristics different from the individual components. The individual components remain separate and distinct within the finished structure, differentiating composites from mixtures and solid solutions.

Resin solid or highly viscous substance of plant or synthetic origin

In polymer chemistry and materials science, resin is a solid or highly viscous substance of plant or synthetic origin that is typically convertible into polymers. Resins are usually mixtures of organic compounds. This article focuses on naturally occurring resins.

Curing is a chemical process employed in polymer chemistry and process engineering that produces the toughening or hardening of a polymer material by cross-linking of polymer chains. Even if it is strongly associated with the production of thermosetting polymers, the term curing can be used for all the processes where starting from a liquid solution, a solid product is obtained.

Contents

Barcol impressor

Originally called the Barber-Colman Impressor, the Barcol impressor was developed by Walter Colman as a hand-held, portable means of assessing the hardness of a material during World War II. [2] The United States Army Air Corps required a hand-held method of checking the hardness of rivets due to concerns that aircraft could be sabotaged by replacing normal rivets with soft lead or wooden ones which would fail during flight. [3] The impressor operates when the tip is pressed against the material in question. [3] The hardness of the material determines how far the tip indents and this is transferred by a tension spring and lever to be read on a dial. [3]

World War II 1939–1945, between Axis and Allies

World War II, also known as the Second World War, was a global war that lasted from 1939 to 1945. The vast majority of the world's countries—including all the great powers—eventually formed two opposing military alliances: the Allies and the Axis. A state of total war emerged, directly involving more than 100 million people from more than 30 countries. The major participants threw their entire economic, industrial, and scientific capabilities behind the war effort, blurring the distinction between civilian and military resources. World War II was the deadliest conflict in human history, marked by 70 to 85 million fatalities, most of whom were civilians in the Soviet Union and China. It included massacres, the genocide of the Holocaust, strategic bombing, premeditated death from starvation and disease, and the only use of nuclear weapons in war.

United States Army Air Corps Air warfare branch of the US Army from 1926 to 1941

The United States Army Air Corps (USAAC) was the aerial warfare service component of the United States Army between 1926 and 1941. After World War I, as early aviation became an increasingly important part of modern warfare, a philosophical rift developed between more traditional ground-based army personnel and those who felt that aircraft were being underutilized and that air operations were being stifled for political reasons unrelated to their effectiveness. The USAAC was renamed from the earlier United States Army Air Service on 2 July 1926, and was part of the larger United States Army. The Air Corps became the United States Army Air Forces (USAAF) on 20 June 1941, giving it greater autonomy from the Army's middle-level command structure. During World War II, although not an administrative echelon, the Air Corps (AC) remained as one of the combat arms of the Army until 1947, when it was legally abolished by legislation establishing the Department of the Air Force.

Operation

The Barcol hardness test is generally used on soft materials such as rigid plastics. It measures hardness based on indentation of a sharp point with a flat tip. The test is performed using a similar method and indentation device as that used to measure Shore D hardness, however the Shore D indentor has a round tip. [4] Barcol hardness is not a valid hardness measure for curved surfaces. [5]

Scales and values

The governing standard for the Barcol hardness test is ASTM D 2583. [4] Barcol hardness is measured on a scale from 0 to 100 with the typical range being between 50B and 90B. A measurement of 60B is roughly equivalent to a Shore hardness of 80D or a Rockwell hardness M100. [4] [6] As defined in ASTM D 2583 the scale divisions from 0-100 should each indicate a depth of 0.0076 mm or the equivalent 0.0003 inches. [7]

See also

Knoop hardness test

The Knoop hardness test is a microhardness test – a test for mechanical hardness used particularly for very brittle materials or thin sheets, where only a small indentation may be made for testing purposes. A pyramidal diamond point is pressed into the polished surface of the test material with a known load, for a specified dwell time, and the resulting indentation is measured using a microscope. The geometry of this indenter is an extended pyramid with the length to width ratio being 7:1 and respective face angles are 172 degrees for the long edge and 130 degrees for the short edge. The depth of the indentation can be approximated as 1/30 of the long dimension. The Knoop hardness HK or KHN is then given by the formula:

Rockwell scale

The Rockwell scale is a hardness scale based on indentation hardness of a material. The Rockwell test measuring the depth of penetration of an indenter under a large load compared to the penetration made by a preload. There are different scales, denoted by a single letter, that use different loads or indenters. The result is a dimensionless number noted as HRA, HRB, HRC, etc., where the last letter is the respective Rockwell scale . When testing metals, indentation hardness correlates linearly with tensile strength.

Shore durometer

The Shore durometer is a device for measuring the hardness of a material, typically of polymers, elastomers, and rubbers.

Related Research Articles

Thermosetting polymer polymer material that irreversibly cures

A thermosetting polymer, resin, or plastic, often called a thermoset, is a polymer that is irreversibly hardened by curing from a soft solid or viscous liquid prepolymer or resin. Curing is induced by heat or suitable radiation and may be promoted by high pressure, or mixing with a catalyst. It results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

Brinell scale Brinell scale of hardness

The Brinell scale characterizes the indentation hardness of materials through the scale of penetration of an indenter, loaded on a material test-piece. It is one of several definitions of hardness in materials science.

Vickers hardness test

The Vickers hardness test was developed in 1921 by Robert L. Smith and George E. Sandland at Vickers Ltd as an alternative to the Brinell method to measure the hardness of materials. The Vickers test is often easier to use than other hardness tests since the required calculations are independent of the size of the indenter, and the indenter can be used for all materials irrespective of hardness. The basic principle, as with all common measures of hardness, is to observe a material's ability to resist plastic deformation from a standard source. The Vickers test can be used for all metals and has one of the widest scales among hardness tests. The unit of hardness given by the test is known as the Vickers Pyramid Number (HV) or Diamond Pyramid Hardness (DPH). The hardness number can be converted into units of pascals, but should not be confused with pressure, which uses the same units. The hardness number is determined by the load over the surface area of the indentation and not the area normal to the force, and is therefore not pressure.

Indentation hardness

Indentation hardness tests are used in mechanical engineering to determine the hardness of a material to deformation. Several such tests exist, wherein the examined material is indented until an impression is formed; these tests can be performed on a macroscopic or microscopic scale.

Hardness is a measure of the resistance to localized plastic deformation induced by either mechanical indentation or abrasion. Some materials are harder than others. Macroscopic hardness is generally characterized by strong intermolecular bonds, but the behavior of solid materials under force is complex; therefore, there are different measurements of hardness: scratch hardness, indentation hardness, and rebound hardness.

Schmidt hammer

A Schmidt hammer, also known as a Swiss hammer or a rebound hammer or concrete hammer test, is a device to measure the elastic properties or strength of concrete or rock, mainly surface hardness and penetration resistance. It was invented by Ernst Schmidt, a Swiss engineer.

Nanoindentation

Nanoindentation, also called intrumented indentation testing, is a variety of indentation hardness tests applied to small volumes. Indentation is perhaps the most commonly applied means of testing the mechanical properties of materials. The nanoindentation technique was developed in the mid-1970s to measure the hardness of small volumes of material.

Fire test

A fire test is a means of determining whether fire protection products meet minimum performance criteria as set out in a building code or other applicable legislation. Successful tests in laboratories holding national accreditation for testing and certification result in the issuance of a certification listing. The listing is public domain, whereas the test report itself is proprietary information belonging to the test sponsor.

Hardness scales may refer to:

Berkovich tip

A Berkovich tip is a type of nanoindenter tip used for testing the indentation hardness of a material. It is a three-sided pyramid which is geometrically self-similar. The popular Berkovich now has a very flat profile, with a total included angle of 142.3 degrees and a half angle of 65.27 degrees, measured from the axis to one of the pyramid flats. This Berkovich tip has the same projected area-to-depth ratio as a Vickers indenter. The original tip shape was invented by Russian scientist E.S. Berkovich in the USSR c. 1950, which has a half angle of 65.03 degrees.

Ceramography

Ceramography is the art and science of preparation, examination and evaluation of ceramic microstructures. Ceramography can be thought of as the metallography of ceramics. The microstructure is the structure level of approximately 0.1 to 100 µm, between the minimum wavelength of visible light and the resolution limit of the naked eye. The microstructure includes most grains, secondary phases, grain boundaries, pores, micro-cracks and hardness microindentions. Most bulk mechanical, optical, thermal, electrical and magnetic properties are significantly affected by the microstructure. The fabrication method and process conditions are generally indicated by the microstructure. The root cause of many ceramic failures is evident in the microstructure. Ceramography is part of the broader field of materialography, which includes all the microscopic techniques of material analysis, such as metallography, petrography and plastography. Ceramography is usually reserved for high-performance ceramics for industrial applications, such as 85–99.9% alumina (Al2O3) in Fig. 1, zirconia (ZrO2), silicon carbide (SiC), silicon nitride (Si3N4), and ceramic-matrix composites. It is seldom used on whiteware ceramics such as sanitaryware, wall tiles and dishware.

Meyer's law is an empirical relation between the size of a hardness test indentation and the load required to leave the indentation. The formula was devised by Prof. Eugene Meyer of the Materials Testing Laboratory at the Imperial School of Technology, Charlottenburg, Germany, circa 1908.

Nanoindenter

A nanoindenter is the main component for indentation hardness tests used in nanoindentation. Since the mid-1970s nanoindentation has become the primary method for measuring and testing very small volumes of mechanical properties. Nanoindentation, also called depth sensing indentation or instrumented indentation, gained popularity with the development of machines that could record small load and displacement with high accuracy and precision. The load displacement data can be used to determine modulus of elasticity, hardness, yield strength, fracture toughness, scratch hardness and wear properties.

Leeb rebound hardness test

The Leeb Rebound Hardness Test (LRHT) is one of the four most used methods for testing metal hardness. This portable method is mainly used for testing sufficiently large workpieces.

A void is a pore that remains unfilled with polymer and fibers in a composite material. Voids are typically the result of poor manufacturing of the material and are generally deemed undesirable. Voids can affect the mechanical properties and lifespan of the composite. They degrade mainly the matrix-dominated properties such as interlaminar shear strength, longitudinal compressive strength, and transverse tensile strength. Voids can act as crack initiation sites as well as allow moisture to penetrate the composite and contribute to the anisotropy of the composite. For aerospace applications, a void content of approximately 1% is still acceptable, while for less sensitive applications, the allowance limit is 3-5%. Although a small increase in void content may not seem to cause significant issues, a 1-3% increase in void content of carbon fiber reinforced composite can reduce the mechanical properties by up to 20% Void content in composites is represented as a ratio, also called void ratio, where the volume of voids, solid material, and bulk volume are taken into account. Void ratio can be calculated by the formula below where e is the void ratio of the composite, Vv is the volume of the voids, and Vt is the volume of the bulk material.

The Korsunsky work-of-indentation approach is a method of extracting a value of hardness for a small volume of material from indentation test data. Instead of relying on measurements or assumptions pertaining to the area of contact between indenter and sample, the method uses the load-displacement data registered in the continuously recorded indentation testing (CRIT) that is particularly widely applied in nanoindentation experiments. In particular, the method re-defines hardness and expresses it in terms of the energy (work) associated with indenting the surface of a material by the probe. The work-of-indentation used in the analysis may refer to the total, elastic or dissipated energy, depending on the formulation. The approach was found to be particularly useful in the analysis of thin coatings, nano-multi-layers, nanoscale features.

References

  1. "A model specification for FRP composites for civil engineering structures.(fiber reinforced polymer composite materials)". Construction and Building Materials. 2003-09-01. Retrieved 2008-06-15.
  2. "The Barcol Impressor". Archived from the original on 22 June 2008. Retrieved 2008-06-15.
  3. 1 2 3 Bennett, Robert B (September 1967). "Impressor Impresses Industry". Barber-Colman News. Retrieved 2008-06-15.
  4. 1 2 3 Harper, Charles A.; Petrie, Edward M. "Barcol Hardness". Plastics Materials and Processes: A Concise Encyclopedia. John Wiley and Sons. Retrieved 2008-02-10.
  5. "NHML Resources - Hardness Testing". New Hampshire Materials Laboratory, Inc. Archived from the original on 12 May 2008. Retrieved 2008-06-21.
  6. "Appendix I: Charts and Tables". Handbook of Plastics Testing and Failure Analysis: 560–617. doi:10.1002/9780470100424.app9.
  7. ASTM D 2583-07 "Standard Test Method for Indentation Hardness of Rigid Plastics by Means of a Barcol Impressor". ASTM International. Revision as of 2007-03-01