Indentation hardness tests are used in mechanical engineering to determine the hardness of a material to deformation. Several such tests exist, wherein the examined material is indented until an impression is formed; these tests can be performed on a macroscopic or microscopic scale.
When testing metals, indentation hardness correlates roughly linearly with tensile strength, [1] but it is an imperfect correlation often limited to small ranges of strength and hardness for each indentation geometry. This relation permits economically important nondestructive testing of bulk metal deliveries with lightweight, even portable equipment, such as hand-held Rockwell hardness testers.
Different techniques are used to quantify material characteristics at smaller scales. Measuring mechanical properties for materials, for instance, of thin films, cannot be done using conventional uniaxial tensile testing. As a result, techniques testing material "hardness" by indenting a material with a very small impression have been developed to attempt to estimate these properties.
Hardness measurements quantify the resistance of a material to plastic deformation. Indentation hardness tests compose the majority of processes used to determine material hardness, and can be divided into three classes: macro, micro and nanoindentation tests. [2] [3] Microindentation tests typically have forces less than 2 N (0.45 lbf). Hardness, however, cannot be considered to be a fundamental material property.[ citation needed ] Classical hardness testing usually creates a number which can be used to provide a relative idea of material properties. [3] As such, hardness can only offer a comparative idea of the material's resistance to plastic deformation since different hardness techniques have different scales.
The equation based definition of hardness is the pressure applied over the contact area between the indenter and the material being tested. As a result hardness values are typically reported in units of pressure, although this is only a "true" pressure if the indenter and surface interface is perfectly flat.[ citation needed ]
Instrumented indentation basically indents a sharp tip into the surface of a material to obtain a force-displacement curve. The results provide a lot of information about the mechanical behavior of the material, including hardness, e.g., elastic moduli and plastic deformation. One key factor of instrumented indentation test is that the tip needs to be controlled by force or displacement that can be measured simultaneously throughout the indentation cycle. [4] Current technology can realize accurate force control in a wide range. Therefore hardness can be characterized at many different length scales, from hard materials like ceramics to soft materials like polymers.
The earliest work was finished by Bulychev, Alekhin, Shorshorov in the 1970s, who determined that Young's modulus of a material can be determined from the slope of a force vs. displacement indentation curve as: [5]
Where and are the Young's modulus and Poisson's ratio of the sample, an and are that of the indenter. Since typically, , the second term can typically be ignored.
The most critical information, hardness, can be calculated by:
Commonly used indentation techniques, as well as detailed calculation of each different method, are discussed as follows.
The term "macroindentation" is applied to tests with a larger test load, such as 1 kgf or more. There are various macroindentation tests, including:
There is, in general, no simple relationship between the results of different hardness tests. Though there are practical conversion tables for hard steels, for example, some materials show qualitatively different behaviors under the various measurement methods. The Vickers and Brinell hardness scales correlate well over a wide range, however, with Brinell only producing overestimated values at high loads.
Indentation procedures can, however, be used to extract genuine stress-strain relationships. Certain criteria need to be met if reliable results are to be obtained. These include the need to deform a relatively large volume, and hence to use large loads. The methodologies involved are often grouped under the term Indentation plastometry, which is described in a separate article.
The term "microhardness" has been widely employed in the literature to describe the hardness testing of materials with low applied loads. A more precise term is "microindentation hardness testing." In microindentation hardness testing, a diamond indenter of specific geometry is impressed into the surface of the test specimen using a known applied force (commonly called a "load" or "test load") of 1 to 1000 gf. Microindentation tests typically have forces of 2 N (roughly 200 gf) and produce indentations of about 50 μm. Due to their specificity, microhardness testing can be used to observe changes in hardness on the microscopic scale. Unfortunately, it is difficult to standardize microhardness measurements; it has been found that the microhardness of almost any material is higher than its macrohardness. Additionally, microhardness values vary with load and work-hardening effects of materials. [3] The two most commonly used microhardness tests are tests that also can be applied with heavier loads as macroindentation tests:
In microindentation testing, the hardness number is based on measurements made of the indent formed in the surface of the test specimen. The hardness number is based on the applied force divided by the surface area of the indent itself, giving hardness units in kgf/mm2. Microindentation hardness testing can be done using Vickers as well as Knoop indenters. For the Vickers test, both the diagonals are measured and the average value is used to compute the Vickers pyramid number. In the Knoop test, only the longer diagonal is measured, and the Knoop hardness is calculated based on the projected area of the indent divided by the applied force, also giving test units in kgf/mm2.
The Vickers microindentation test is carried out in a similar manner welling to the Vickers macroindentation tests, using the same pyramid. The Knoop test uses an elongated pyramid to indent material samples. This elongated pyramid creates a shallow impression, which is beneficial for measuring the hardness of brittle materials or thin components. Both the Knoop and Vickers indenters require polishing of the surface to achieve accurate results.[ citation needed ]
Scratch tests at low loads, such as the Bierbaum microcharacter test, performed with either 3 gf or 9 gf loads, preceded the development of microhardness testers using traditional indenters. In 1925, Smith and Sandland of the UK developed an indentation test that employed a square-based pyramidal indenter made from diamond. [11] They chose the pyramidal shape with an angle of 136° between opposite faces in order to obtain hardness numbers that would be as close as possible to Brinell hardness numbers for the specimen. The Vickers test has a great advantage of using one hardness scale to test all materials. The first reference to the Vickers indenter with low loads was made in the annual report of the National Physical Laboratory in 1932. Lips and Sack describes the first Vickers tester using low loads in 1936.[ citation needed ]
There is some disagreement in the literature regarding the load range applicable to microhardness testing. ASTM Specification E384, for example, states that the load range for microhardness testing is 1 to 1000 gf. For loads of 1 kgf and below, the Vickers hardness (HV) is calculated with an equation, wherein load (L) is in grams force and the mean of two diagonals (d) is in millimeters:
For any given load, the hardness increases rapidly at low diagonal lengths, with the effect becoming more pronounced as the load decreases. Thus at low loads, small measurement errors will produce large hardness deviations. Thus one should always use the highest possible load in any test. Also, in the vertical portion of the curves, small measurement errors will produce large hardness deviations.
The main sources of error with indentation tests are poor technique, poor calibration of the equipment, and the strain hardening effect of the process. However, it has been experimentally determined through "strainless hardness tests" that the effect is minimal with smaller indentations. [12]
Surface finish of the part and the indenter do not have an effect on the hardness measurement, as long as the indentation is large compared to the surface roughness. This proves to be useful when measuring the hardness of practical surfaces. It also is helpful when leaving a shallow indentation, because a finely etched indenter leaves a much easier to read indentation than a smooth indenter. [13]
The indentation that is left after the indenter and load are removed is known to "recover", or spring back slightly. This effect is properly known as shallowing. For spherical indenters the indentation is known to stay symmetrical and spherical, but with a larger radius. For very hard materials the radius can be three times as large as the indenter's radius. This effect is attributed to the release of elastic stresses. Because of this effect the diameter and depth of the indentation do contain errors. The error from the change in diameter is known to be only a few percent, with the error for the depth being greater. [14]
Another effect the load has on the indentation is the piling-up or sinking-in of the surrounding material. If the metal is work hardened it has a tendency to pile up and form a "crater". If the metal is annealed it will sink in around the indentation. Both of these effects add to the error of the hardness measurement. [15]
When hardness, , is defined as the mean contact pressure (load/ projected contact area), the yield stress, , of many materials is proportional to the hardness by a constant known as the constrain factor, C. [16]
where:
The hardness differs from the uni-axial compressive yield stress of the material because different compressive failure modes apply. A uni-axial test only constrains the material in one dimension, which allows the material to fail as a result of shear. Indentation hardness on the other hand is constrained in three dimensions which prevent shear from dominating the failure. [16]
Structural geology is the study of the three-dimensional distribution of rock units with respect to their deformational histories. The primary goal of structural geology is to use measurements of present-day rock geometries to uncover information about the history of deformation (strain) in the rocks, and ultimately, to understand the stress field that resulted in the observed strain and geometries. This understanding of the dynamics of the stress field can be linked to important events in the geologic past; a common goal is to understand the structural evolution of a particular area with respect to regionally widespread patterns of rock deformation due to plate tectonics.
The Rockwell scale is a hardness scale based on indentation hardness of a material. The Rockwell test measures the depth of penetration of an indenter under a large load compared to the penetration made by a preload. There are different scales, denoted by a single letter, that use different loads or indenters. The result is a dimensionless number noted as HRA, HRB, HRC, etc., where the last letter is the respective Rockwell scale. Larger numbers correspond to harder materials.
The Brinell scale characterizes the indentation hardness of materials through the scale of penetration of an indenter, loaded on a material test-piece. It is one of several definitions of hardness in materials science.
The Vickers hardness test was developed in 1921 by Robert L. Smith and George E. Sandland at Vickers Ltd as an alternative to the Brinell method to measure the hardness of materials. The Vickers test is often easier to use than other hardness tests since the required calculations are independent of the size of the indenter, and the indenter can be used for all materials irrespective of hardness. The basic principle, as with all common measures of hardness, is to observe a material's ability to resist plastic deformation from a standard source. The Vickers test can be used for all metals and has one of the widest scales among hardness tests. The unit of hardness given by the test is known as the Vickers Pyramid Number (HV) or Diamond Pyramid Hardness (DPH). The hardness number can be converted into units of pascals, but should not be confused with pressure, which uses the same units. The hardness number is determined by the load over the surface area of the indentation and not the area normal to the force, and is therefore not pressure.
The Knoop hardness test is a microhardness test – a test for mechanical hardness used particularly for very brittle materials or thin sheets, where only a small indentation may be made for testing purposes. A pyramidal diamond point is pressed into the polished surface of the test material with a known load, for a specified dwell time, and the resulting indentation is measured using a microscope. The geometry of this indenter is an extended pyramid with the length to width ratio being 7:1 and respective face angles are 172 degrees for the long edge and 130 degrees for the short edge. The depth of the indentation can be approximated as 1/30 of the long dimension. The Knoop hardness HK or KHN is then given by the formula:
In materials science, hardness is a measure of the resistance to localized plastic deformation, such as an indentation or a scratch (linear), induced mechanically either by pressing or abrasion. In general, different materials differ in their hardness; for example hard metals such as titanium and beryllium are harder than soft metals such as sodium and metallic tin, or wood and common plastics. Macroscopic hardness is generally characterized by strong intermolecular bonds, but the behavior of solid materials under force is complex; therefore, hardness can be measured in different ways, such as scratch hardness, indentation hardness, and rebound hardness. Hardness is dependent on ductility, elastic stiffness, plasticity, strain, strength, toughness, viscoelasticity, and viscosity. Common examples of hard matter are ceramics, concrete, certain metals, and superhard materials, which can be contrasted with soft matter.
Nanoindentation, also called instrumented indentation testing, is a variety of indentation hardness tests applied to small volumes. Indentation is perhaps the most commonly applied means of testing the mechanical properties of materials. The nanoindentation technique was developed in the mid-1970s to measure the hardness of small volumes of material.
The Shore durometer is a device for measuring the hardness of a material, typically of polymers.
A variety of hardness-testing methods are available, including the Vickers, Brinell, Rockwell, Meyer and Leeb tests. Although it is impossible in many cases to give an exact conversion, it is possible to give an approximate material-specific comparison table for steels.
Ceramography is the art and science of preparation, examination and evaluation of ceramic microstructures. Ceramography can be thought of as the metallography of ceramics. The microstructure is the structure level of approximately 0.1 to 100 µm, between the minimum wavelength of visible light and the resolution limit of the naked eye. The microstructure includes most grains, secondary phases, grain boundaries, pores, micro-cracks and hardness microindentations. Most bulk mechanical, optical, thermal, electrical and magnetic properties are significantly affected by the microstructure. The fabrication method and process conditions are generally indicated by the microstructure. The root cause of many ceramic failures is evident in the microstructure. Ceramography is part of the broader field of materialography, which includes all the microscopic techniques of material analysis, such as metallography, petrography and plastography. Ceramography is usually reserved for high-performance ceramics for industrial applications, such as 85–99.9% alumina (Al2O3) in Fig. 1, zirconia (ZrO2), silicon carbide (SiC), silicon nitride (Si3N4), and ceramic-matrix composites. It is seldom used on whiteware ceramics such as sanitaryware, wall tiles and dishware.
The Barcol hardness test characterizes the indentation hardness of materials through the depth of penetration of an indentor, loaded on a material sample and compared to the penetration in a reference material. The method is most often used for composite materials such as reinforced thermosetting resins or to determine how much a resin or plastic has cured. The test complements the measurement of glass transition temperature, as an indirect measure of the degree of cure of a composite. It is inexpensive and quick, and provides information on the cure throughout a part.
The Meyer hardness test is a hardness test based upon projected area of an impression. The hardness, , is defined as the maximum load, divided by the projected area of the indent, .
Meyer's law is an empirical relation between the size of a hardness test indentation and the load required to leave the indentation. The formula was devised by Eugene Meyer of the Materials Testing Laboratory at the Imperial School of Technology, Charlottenburg, Germany, circa 1908.
A nanoindenter is the main component for indentation hardness tests used in nanoindentation. Since the mid-1970s nanoindentation has become the primary method for measuring and testing very small volumes of mechanical properties. Nanoindentation, also called depth sensing indentation or instrumented indentation, gained popularity with the development of machines that could record small load and displacement with high accuracy and precision. The load displacement data can be used to determine modulus of elasticity, hardness, yield strength, fracture toughness, scratch hardness and wear properties.
The Leeb Rebound Hardness Test (LRHT) invented by Swiss company Proceq SA is one of the four most used methods for testing metal hardness. This portable method is mainly used for testing sufficiently large workpieces.
Mechanical testing covers a wide range of tests, which can be divided broadly into two types:
Materials that are used for biomedical or clinical applications are known as biomaterials. The following article deals with fifth generation biomaterials that are used for bone structure replacement. For any material to be classified for biomedical applications, three requirements must be met. The first requirement is that the material must be biocompatible; it means that the organism should not treat it as a foreign object. Secondly, the material should be biodegradable ; the material should harmlessly degrade or dissolve in the body of the organism to allow it to resume natural functioning. Thirdly, the material should be mechanically sound; for the replacement of load-bearing structures, the material should possess equivalent or greater mechanical stability to ensure high reliability of the graft.
The Palmqvist method, or the Palmqvist toughness test, is a common method to determine the fracture toughness for cemented carbides. In this case, the material's fracture toughness is given by the critical stress intensity factor KIc.
The indentation size effect (ISE) is the observation that hardness tends to increase as the indent size decreases at small scales. When an indent is created during material testing, the hardness of the material is not constant. At the small scale, materials will actually be harder than at the macro-scale. For the conventional indentation size effect, the smaller the indentation, the larger the difference in hardness. The effect has been seen through nanoindentation and microindentation measurements at varying depths. Dislocations increase material hardness by increasing flow stress through dislocation blocking mechanisms. Materials contain statistically stored dislocations (SSD) which are created by homogeneous strain and are dependent upon the material and processing conditions. Geometrically necessary dislocations (GND) on the other hand are formed, in addition to the dislocations statistically present, to maintain continuity within the material.
Indentation plastometry is the idea of using an indentation-based procedure to obtain (bulk) mechanical properties in the form of stress-strain relationships in the plastic regime. Since indentation is a much easier and more convenient procedure than conventional tensile testing, with far greater potential for mapping of spatial variations, this is an attractive concept.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)