Identifiers | |
---|---|
ChemSpider |
|
Properties | |
H-(C5H8)n-OH | |
Appearance | Transparent oily liquid |
Density | 0.902–0.905 g/cm3 |
Insoluble | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Polyprenols are natural long-chain isoprenoid alcohols of the general formula H-(C5H8)n-OH, where n is the number of isoprene units. Any prenol with more than 4 isoprene units is a polyprenol. Polyprenols play an important function, acting as natural bioregulators and are found in small quantities in various plant tissues. Dolichols, which are found in all living creatures, including humans, are their 2,3-dihydro derivatives. [1]
Live trees are known to contain polyprenols. The needles of conifer trees are one of the richest sources of polyprenols. [2] They are also present in shiitake mushrooms in trace amounts. [3]
This section needs additional citations for verification .(April 2024) |
Polyprenols have been studied for more than 30 years. Interest has been strongest in Russia, Europe, Japan, India, and the United States. In the early 1930s, a scientific team at the Forest Technical Academy in St. Petersburg, Russia led by Fyodor Solodky, the founder of Forest Biochemistry, and Asney Agranet, began research into the composition of conifer tree needles. [4] They were intrigued by the trees' ability to remain disease free in extremes of temperature ± 40 °C. Development of Solodky's research led Russian scientists to isolate a completely different class of organic substance from the needles, including polyprenols.
Polyprenols are low molecular natural bioregulators (physiologically active), playing a significant modulating role in the cellular process in plants referred to as biosynthesis.
What polyprenols are to plants, dolichols are to all living creatures, including man. They are in fact of a very similar chemical composition. Dolichols are a derivative of polyprenols with a saturated isoprene unit.
Through dolichols, the dolichol phosphate cycle occurs. The dolichol phosphate cycle plays a major role in the synthesis of glycoproteins.
All proteins from secretions, membranes and intracellular glycoproteins form the basis for the building of membrane receptors which are used in the production of insulin, adrenaline, estrogen, testosterone and other hormones and enzymes. Seemingly, dolichols have an important role in maintenance of the correct lipid composition of membranes. Decreased levels of dolichols have been connected to higher levels of peroxidation of lipids. [5]
The dolichol phosphate cycle facilitates the process of cellular membrane glycosylation, that is, the synthesis of glycoproteins that control the interactions of cells, support the immune system and the stabilization of protein molecules. Out of all these glycoproteins, polyglycoprotein has been found to create drug resistance to multiple cancer treatments and keep cancer cells alive. [6]
The pharmacological activity of polyprenols takes place in the liver, where they are metabolized into dolichols. [7]
This section needs more reliable medical references for verification or relies too heavily on primary sources .(February 2018) |
The interest in polyprenols and dolichols is associated with their wide range of demonstrated biological activity and extremely low toxicity.
Polyprenols cellular reparation and spermatogenesis, and have antistress, adaptogenic, antiulcerogenic and wound-healing activity. [8] Dolichols have antioxidant activity and protect cell membranes from peroxidation. [9] Experiments on mice have demonstrated that polyprenols have antiviral activity, in particular against influenza viruses. [10] It has been established that the dolichol level in liver tumor cells are reduced in comparison with healthy hepatic cells. [11]
The Australian pharmaceutical company Solagran Limited has been investigating the medical significance of polyprenols. [12] [13]
Antioxidants are compounds that inhibit oxidation, a chemical reaction that can produce free radicals. Autoxidation leads to degradation of organic compounds, including living matter. Antioxidants are frequently added to industrial products, such as polymers, fuels, and lubricants, to extend their usable lifetimes. Foods are also treated with antioxidants to forestall spoilage, in particular the rancidification of oils and fats. In cells, antioxidants such as glutathione, mycothiol, or bacillithiol, and enzyme systems like superoxide dismutase, can prevent damage from oxidative stress.
The endoplasmic reticulum (ER) is a part of a transportation system of the eukaryotic cell, and has many other important functions such as protein folding. It is a type of organelle made up of two subunits – rough endoplasmic reticulum (RER), and smooth endoplasmic reticulum (SER). The endoplasmic reticulum is found in most eukaryotic cells and forms an interconnected network of flattened, membrane-enclosed sacs known as cisternae, and tubular structures in the SER. The membranes of the ER are continuous with the outer nuclear membrane. The endoplasmic reticulum is not found in red blood cells, or spermatozoa.
Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Lipids have applications in the cosmetic and food industries, and in nanotechnology.
Lipid-anchored proteins are proteins located on the surface of the cell membrane that are covalently attached to lipids embedded within the cell membrane. These proteins insert and assume a place in the bilayer structure of the membrane alongside the similar fatty acid tails. The lipid-anchored protein can be located on either side of the cell membrane. Thus, the lipid serves to anchor the protein to the cell membrane. They are a type of proteolipids.
A congenital disorder of glycosylation is one of several rare inborn errors of metabolism in which glycosylation of a variety of tissue proteins and/or lipids is deficient or defective. Congenital disorders of glycosylation are sometimes known as CDG syndromes. They often cause serious, sometimes fatal, malfunction of several different organ systems in affected infants. The most common sub-type is PMM2-CDG where the genetic defect leads to the loss of phosphomannomutase 2 (PMM2), the enzyme responsible for the conversion of mannose-6-phosphate into mannose-1-phosphate.
Dolichol refers to any of a group of long-chain mostly unsaturated organic compounds that are made up of varying numbers of isoprene units terminating in an α-saturated isoprenoid group, containing an alcohol functional group.
Phosphatidylinositol or inositol phospholipid is a biomolecule. It was initially called "inosite" when it was discovered by Léon Maquenne and Johann Joseph von Scherer in the late 19th century. It was discovered in bacteria but later also found in eukaryotes, and was found to be a signaling molecule.
Glycerophospholipids or phosphoglycerides are glycerol-based phospholipids. They are the main component of biological membranes in eukaryotic cells. They are a type of lipid, of which its composition affects membrane structure and properties. Two major classes are known: those for bacteria and eukaryotes and a separate family for archaea.
Cardiolipin is an important component of the inner mitochondrial membrane, where it constitutes about 20% of the total lipid composition. It can also be found in the membranes of most bacteria. The name "cardiolipin" is derived from the fact that it was first found in animal hearts. It was first isolated from the beef heart in the early 1940s by Mary C. Pangborn. In mammalian cells, but also in plant cells, cardiolipin (CL) is found almost exclusively in the inner mitochondrial membrane, where it is essential for the optimal function of numerous enzymes that are involved in mitochondrial energy metabolism.
In biochemistry, an ether lipid refers to any lipid in which the lipid "tail" group is attached to the glycerol backbone via an ether bond at any position. In contrast, conventional glycerophospholipids and triglycerides are triesters. Structural types include:
Ceramides are a family of waxy lipid molecules. A ceramide is composed of sphingosine and a fatty acid joined by an amide bond. Ceramides are found in high concentrations within the cell membrane of eukaryotic cells, since they are component lipids that make up sphingomyelin, one of the major lipids in the lipid bilayer. Contrary to previous assumptions that ceramides and other sphingolipids found in cell membrane were purely supporting structural elements, ceramide can participate in a variety of cellular signaling: examples include regulating differentiation, proliferation, and programmed cell death (PCD) of cells.
Prenol, or 3-methyl-2-buten-1-ol, is a natural alcohol. It is one of the most simple terpenoids. It is a clear colorless oil that is reasonably soluble in water and miscible with most common organic solvents. It has a fruity odor and is used occasionally in perfumery.
Glycosyltransferases are enzymes that establish natural glycosidic linkages. They catalyze the transfer of saccharide moieties from an activated nucleotide sugar to a nucleophilic glycosyl acceptor molecule, the nucleophile of which can be oxygen- carbon-, nitrogen-, or sulfur-based.
Phosphatidylglycerol is a glycerophospholipid found in pulmonary surfactant and in the plasma membrane where it directly activates lipid-gated ion channels.
Diphosphomevalonate decarboxylase (EC 4.1.1.33), most commonly referred to in scientific literature as mevalonate diphosphate decarboxylase, is an enzyme that catalyzes the chemical reaction
UDP-N-acetylglucosamine—dolichyl-phosphate N-acetylglucosaminephosphotransferase is an enzyme that in humans is encoded by the DPAGT1 gene.
Bactoprenol also known as dolichol-11 and C55-isoprenyl alcohol (C55-OH) is a lipid first identified in certain species of lactobacilli. It is a hydrophobic alcohol that plays a key role in the growth of cell walls (peptidoglycan) in Gram-positive bacteria.
N-linked glycosylation, is the attachment of an oligosaccharide, a carbohydrate consisting of several sugar molecules, sometimes also referred to as glycan, to a nitrogen atom, in a process called N-glycosylation, studied in biochemistry. The resulting protein is called an N-linked glycan, or simply an N-glycan.
Ditrans,polycis-polyprenyl diphosphate synthase is an enzyme with systematic name (2E,6E)-farnesyl-diphosphate:isopentenyl-diphosphate cistransferase . This enzyme catalyses the following chemical reaction
Phosphoglycosyl transferase C (PglC) is an enzyme belonging to a class known as monotopic phosphoglycosyl transferases (PGT). PGTs are required for the synthesis of glycoconjugates on the membrane surface of bacteria. Glycoconjugates, such as glycoproteins, are imperative for bacterial communication as well as host cell interactions between prokaryotic and eukaryotic cells lending to bacteria's pathogenicity.