Prenol

Last updated
Prenol
Prenol structure.png
Prenol-3D-balls.png
Names
Preferred IUPAC name
3-Methylbut-2-en-1-ol
Other names
3,3-Dimethylallyl alcohol
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.008.312 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 209-141-4
PubChem CID
UNII
  • InChI=1S/C5H10O/c1-5(2)3-4-6/h3,6H,4H2,1-2H3 Yes check.svgY
    Key: ASUAYTHWZCLXAN-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C5H10O/c1-5(2)3-4-6/h3,6H,4H2,1-2H3
  • OC\C=C(/C)C
Properties [1]
C5H10O
Molar mass 86.132 g/mol
Density 0.848 g/cm3
Melting point −59 °C (−74 °F; 214 K) (calculated)
Boiling point 142 °C (288 °F; 415 K) (approximation)
17 g/100 ml (20 °C)
log P 0.91
Vapor pressure 3.17 hPa (25 °C, extrapolated)
Hazards [1] [2]
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg
Warning
H226, H302
P210, P233, P240, P241, P242, P243, P264, P270, P301+P312, P303+P361+P353, P330, P370+P378, P403+P235, P501
Flash point 43.3 °C (109.9 °F; 316.4 K) [note 1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Prenol, or 3-methyl-2-buten-1-ol, is a natural alcohol. It is one of the most simple terpenoids. It is a clear colorless oil that is reasonably soluble in water and miscible with most common organic solvents. It has a fruity odor and is used occasionally in perfumery.

Contents

Prenol occurs naturally in citrus fruits, cranberry, bilberry, currants, grapes, raspberry, blackberry, tomato, white bread, hop oil, coffee, arctic bramble, cloudberry and passion fruit. [1] It is also manufactured industrially by BASF (in Ludwigshafen, Germany) and by Kuraray (in Asia) as an intermediate to pharmaceuticals and aroma compounds. Global production in 2001 was between 6000 and 13,000 tons. [1]

Industrial production

Prenol is produced industrially by the reaction of formaldehyde with isobutene, followed by the isomerization of the resulting isoprenol (3-methyl-3-buten-1-ol). [1] [3]

The reaction of isobutene with formaldehyde to give isoprenol, the first step in the industrial manufacture of prenol Isoprenol prepn.png
The reaction of isobutene with formaldehyde to give isoprenol, the first step in the industrial manufacture of prenol
The isomerization of isoprenol to prenol, the second step in the industrial manufacture of prenol Prenol prepn.png
The isomerization of isoprenol to prenol, the second step in the industrial manufacture of prenol

Polyprenols

Prenol is a building block of isoprenoid alcohols, which have the general formula:

H–[CH2CCH3=CHCH2]n–OH

The repeating C5H8 moiety in the brackets is called isoprene, and these compounds are sometimes called 'isoprenols'. [4] They should not be confused with isoprenol, which is an isomer of prenol with a terminal double bond. The simplest isoprenoid alcohol is geraniol (n = 2): higher oligomers include farnesol (n = 3) and geranylgeraniol (n = 4).

When the isoprene unit attached to the alcohol is saturated, the compound is referred to as a dolichol. Dolichols are important as glycosyl carriers in the synthesis of polysaccharides. They also play a major role in protecting cellular membranes, stabilising cell proteins and supporting the body's immune system.

Prenol is polymerized by dehydration reactions; when there are at least five isoprene units (n in the above formula is greater than or equal to five), the polymer is called a polyprenol. Polyprenols can contain up to 100 isoprene units (n = 100) linked end to end with the hydroxyl group (–OH) remaining at the end. These long-chain isoprenoid alcohols are also called ‘terpenols’. They are important in the acylation of proteins, carotenoids, and fat-soluble vitamins A, E and K.

Polyprenols also play a vital role in cell metabolism. Research indicates that ingested polyprenols are metabolised by human and animal liver into dolichols which then take part in the dolichol phosphate cycle and are therefore easily assimilated by humans and animals. The pharmacological activity of polyprenols is based on their substitutive effect in the case of dolichol deficits which are observed with chronic inflammatory, degenerative and oncological diseases. [5]

Live conifer needles are one of the richest and most widely available sources for polyprenol extraction in the world. Commercial extraction of polyprenols involves a soft extraction procedure that enables them to be extracted without destroying their biological activity. [6]

Notes

  1. BASF gives a value for the flash point of prenol of 51.5 °C (125 °F), which is used in the OECD Screening Information Data Set (SIDS): the difference in the two values does not alter the safety classification of prenol as a category 3 flammable liquid (GHS) or class II combustible liquid (U.S., 29 C.F.R § 1910.106, NFPA class F2).

Related Research Articles

<span class="mw-page-title-main">Lipid</span> Substance of biological origin that is soluble in nonpolar solvents

Lipids are a broad group of organic compounds which include fats, waxes, sterols, fat-soluble vitamins, monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include storing energy, signaling, and acting as structural components of cell membranes. Lipids have applications in the cosmetic and food industries, and in nanotechnology.

Isoprene, or 2-methyl-1,3-butadiene, is a common volatile organic compound with the formula CH2=C(CH3)−CH=CH2. In its pure form it is a colorless volatile liquid. It is produced by many plants and animals (including humans) and its polymers are the main component of natural rubber. C. G. Williams named the compound in 1860 after obtaining it from the pyrolysis of natural rubber; he correctly deduced the empirical formula C5H8.

<span class="mw-page-title-main">Terpene</span> Class of oily organic compounds found in plants

Terpenes are a class of natural products consisting of compounds with the formula (C5H8)n for n ≥ 2. Terpenes are major biosynthetic building blocks. Comprising more than 30,000 compounds, these unsaturated hydrocarbons are produced predominantly by plants, particularly conifers. In plants, terpenes and terpenoids are important mediators of ecological interactions, while some insects use some terpenes as a form of defense. Other functions of terpenoids include cell growth modulation and plant elongation, light harvesting and photoprotection, and membrane permeability and fluidity control.

Dolichol refers to any of a group of long-chain mostly unsaturated organic compounds that are made up of varying numbers of isoprene units terminating in an α-saturated isoprenoid group, containing an alcohol functional group.

In organometallic chemistry, acetylide refers to chemical compounds with the chemical formulas MC≡CH and MC≡CM, where M is a metal. The term is used loosely and can refer to substituted acetylides having the general structure RC≡CM. Acetylides are reagents in organic synthesis. The calcium acetylide commonly called calcium carbide is a major compound of commerce.

<span class="mw-page-title-main">2-Butanol</span> Secondary alcohol

Butan-2-ol, or sec-butanol, is an organic compound with formula CH3CH(OH)CH2CH3. Its structural isomers are 1-butanol, isobutanol, and tert-butanol. 2-Butanol is chiral and thus can be obtained as either of two stereoisomers designated as (R)-(−)-butan-2-ol and (S)-(+)-butan-2-ol. It is normally encountered as a 1:1 mixture of the two stereoisomers — a racemic mixture.

An allylic rearrangement or allylic shift is an organic reaction in which the double bond in an allyl chemical compound shifts to the next carbon atom. It is encountered in nucleophilic substitution.

<span class="mw-page-title-main">Methyl isobutyl ketone</span> Chemical compound

Methyl isobutyl ketone (MIBK, 4-methylpentan-2-one) is an organic compound with the condensed chemical formula (CH3)2CHCH2C(O)CH3. This ketone is a colourless liquid that is used as a solvent for gums, resins, paints, varnishes, lacquers, and nitrocellulose.

<span class="mw-page-title-main">Liquid–liquid extraction</span> Method to separate compounds or metal complexes

Liquid–liquid extraction, also known as solvent extraction and partitioning, is a method to separate compounds or metal complexes, based on their relative solubilities in two different immiscible liquids, usually water (polar) and an organic solvent (non-polar). There is a net transfer of one or more species from one liquid into another liquid phase, generally from aqueous to organic. The transfer is driven by chemical potential, i.e. once the transfer is complete, the overall system of chemical components that make up the solutes and the solvents are in a more stable configuration. The solvent that is enriched in solute(s) is called extract. The feed solution that is depleted in solute(s) is called the raffinate. Liquid-liquid extraction is a basic technique in chemical laboratories, where it is performed using a variety of apparatus, from separatory funnels to countercurrent distribution equipment called as mixer settlers. This type of process is commonly performed after a chemical reaction as part of the work-up, often including an acidic work-up.

<span class="mw-page-title-main">Isoamyl alcohol</span> Chemical compound

Isoamyl alcohol is a colorless liquid with the formula C
5
H
12
O
, specifically (H3C–)2CH–CH2–CH2–OH. It is one of several isomers of amyl alcohol (pentanol). It is also known as isopentyl alcohol, isopentanol, or (in the IUPAC recommended nomenclature) 3-methyl-butan-1-ol. An obsolete name for it was isobutyl carbinol.

<span class="mw-page-title-main">1-Butanol</span> Chemical compound

1-Butanol, also known as butan-1-ol or n-butanol, is a primary alcohol with the chemical formula C4H9OH and a linear structure. Isomers of 1-butanol are isobutanol, butan-2-ol and tert-butanol. The unmodified term butanol usually refers to the straight chain isomer.

<span class="mw-page-title-main">Organosulfate</span> Organic compounds of the form R–O–SO₃ (charge –1)

In organosulfur chemistry, organosulfates are a class of organic compounds sharing a common functional group with the structure R−O−SO−3. The SO4 core is a sulfate group and the R group is any organic residue. All organosulfates are formally esters derived from alcohols and sulfuric acid although many are not prepared in this way. Many sulfate esters are used in detergents, and some are useful reagents. Alkyl sulfates consist of a hydrophobic hydrocarbon chain, a polar sulfate group and either a cation or amine to neutralize the sulfate group. Examples include: sodium lauryl sulfate and related potassium and ammonium salts.

<span class="mw-page-title-main">Methyltrichlorosilane</span> Chemical compound

Methyltrichlorosilane, also known as trichloromethylsilane, is a monomer and organosilicon compound with the formula CH3SiCl3. It is a colorless liquid with a sharp odor similar to that of hydrochloric acid. As methyltrichlorosilane is a reactive compound, it is mainly used a precursor for forming various cross-linked siloxane polymers.

<span class="mw-page-title-main">Polyprenol</span> Chemical compound

Polyprenols are natural long-chain isoprenoid alcohols of the general formula H-(C5H8)n-OH where n is the number of isoprene units. Any prenol with more than 4 isoprene units is a polyprenol. Polyprenols play an important function acting as natural bioregulators and are found in small quantities in various plant tissues. Dolichols, which are found in all living creatures, including humans, are their 2,3-dihydro derivatives.

<span class="mw-page-title-main">Isoprenol</span> Chemical compound

Isoprenol, also known as 3-methylbut-3-en-1-ol, is a hemiterpene alcohol. It is produced industrially as an intermediate to 3-methylbut-2-en-1-ol (prenol): global production in 2001 can be estimated as 6–13 thousand tons.

Ditrans,polycis-polyprenyl diphosphate synthase is an enzyme with systematic name (2E,6E)-farnesyl-diphosphate:isopentenyl-diphosphate cistransferase . This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">2-Octanol</span> Chemical compound

2-Octanol is an organic compound with the chemical formula CH3CH(OH)(CH2)5CH3. It is a colorless oily liquid that is poorly soluble in water but soluble in most organic solvents. 2-Octanol is classified fatty alcohol. A secondary alcohol, it is chiral.

1-Vinylimidazole is a water-soluble basic monomer that forms quaternizable homopolymers by free-radical polymerization with a variety of vinyl and acrylic monomers. The products are functional copolymers, which are used as oil field chemicals and as cosmetic auxiliaries. 1-Vinylimidazole acts as a reactive diluent in UV lacquers, inks, and adhesives.

Isophytol is a terpenoid alcohol that is used as a fragrance and as an intermediate in the production of vitamin E and K1.

α-Isomethyl ionone Chemical compound

α-Isomethyl ionone, also known as α-cetone, is a synthetically made and naturally occurring organic compound found in Brewer's yeasts or the species known as Saccharomyces cerevisiae. The compound is an isomer of methyl ionone. Alpha-isomethyl ionone can be colorless or pale-straw coloured liquid. Its primary scent is flowery and secondary scent is violet. It may also have a woody or orris-like scent. and is often used in flavouring and cosmetic industries for example, aftershave lotions, bath products, hair care products, moisturizers, perfumes, shampoos and skin care products. It is also an ingredient used in Chanel No. 5, and other branded products such as Fidji by Guy Laroche. Perfume fragrances that α-isomethyl ionone is used in are for example, amber, chypre, violet, mimosa, reseda, iris, orris, cyclamen, chypre, berries, woody notes, ylang-ylang, leather, orange, nut, pistachio, muscatel, and tobacco.

References

  1. 1 2 3 4 5 3-Methyl-2-buten-1-ol (PDF), SIDS Initial Assessment Report, Geneva: United Nations Environment Programme, May 2005.
  2. HSNO Chemical Classification Information Database, New Zealand Environmental Risk Management Agency, retrieved 2009-08-31[ permanent dead link ].
  3. See, e.g., Kogan, S. B.; Kaliya, M.; Froumin, N. (2006), "Liquid phase isomerization of isoprenol into prenol in hydrogen environment", Appl. Catal. A: Gen., 297 (2): 231–36, doi:10.1016/j.apcata.2005.09.010 .
  4. See, e.g., Goodfellow, Robert D.; Huang, Yung-Sheng; Radtke, Harold E. Jr. (1972), "Isoprenol biosynthesis in the fly, Sarcophaga bullata", Insect Biochem., 2 (8): 467–75, doi:10.1016/0020-1790(72)90027-3 .
  5. Edlund, C.; Söderberg, M.; Kristensson, K. (1994), "Isoprenoids in aging and neurodegeneration", Neurochem. Int., 25 (1): 35–38, doi:10.1016/0197-0186(94)90050-7, PMID   7950967 .
  6. Company Announcement – Report on Opening of Tomsk Production Facility, Solagran Ltd., 2008-03-27, retrieved 2009-08-31.