Formal ball

Last updated

In topology, a formal ball is an extension of the notion of ball to allow unbounded and negative radius. The concept of formal ball was introduced by Weihrauch and Schreiber in 1981 and the negative radius case (the generalized formal ball) by Tsuiki and Hattori in 2008.

Topology Branch of mathematics

In mathematics, topology is concerned with the properties of space that are preserved under continuous deformations, such as stretching, twisting, crumpling and bending, but not tearing or gluing.

Ball (mathematics) in mathematics, space inside a sphere

In mathematics, a ball is the space bounded by a sphere. It may be a closed ball or an open ball.

Specifically, if is a metric space and the nonnegative real numbers, then an element of is a formal ball. Elements of are known as generalized formal balls.

In mathematics, a metric space is a set together with a metric on the set. The metric is a function that defines a concept of distance between any two members of the set, which are usually called points. The metric satisfies a few simple properties. Informally:

Formal balls possess a partial order defined by if , identical to that defined by set inclusion.

Generalized formal balls are interesting because this partial order works just as well for as for , even though a generalized formal ball with negative radius does not correspond to a subset of .

Formal balls possess the Lawson topology and the Martin topology.

In mathematics and theoretical computer science the Lawson topology, named after Jimmie D. Lawson, is a topology on partially ordered sets used in the study of domain theory. The lower topology on a poset P is generated by the subbasis consisting of all complements of principal filters on P. The Lawson topology on P is the smallest common refinement of the lower topology and the Scott topology on P.

Related Research Articles

In mathematics, a continuous function is a function for which sufficiently small changes in the input result in arbitrarily small changes in the output. Otherwise, a function is said to be a discontinuous function. A continuous function with a continuous inverse function is called a homeomorphism.

Real analysis branch of mathematical analysis

In mathematics, real analysis is the branch of mathematical analysis that studies the behavior of real numbers, sequences and series of real numbers, and real-valued functions. Some particular properties of real-valued sequences and functions that real analysis studies include convergence, limits, continuity, smoothness, differentiability and integrability.

This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

Harmonic function function with vanishing Laplacian

In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function f : UR where U is an open subset of Rn that satisfies Laplace's equation, i.e.

In real analysis the Heine–Borel theorem, named after Eduard Heine and Émile Borel, states:

In Riemannian geometry, the scalar curvature is the simplest curvature invariant of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the intrinsic geometry of the manifold near that point. Specifically, the scalar curvature represents the amount by which the volume of a small geodesic ball in a Riemannian manifold deviates from that of the standard ball in Euclidean space. In two dimensions, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In more than two dimensions, however, the curvature of Riemannian manifolds involves more than one functionally independent quantity.

Disk (mathematics) plane figure, bounded by circle

In geometry, a disk is the region in a plane bounded by a circle. A disk is said to be closed if it contains the circle that constitutes its boundary, and open if it does not.

In mathematics, an ultrametric space is a metric space in which the triangle inequality is strengthened to . Sometimes the associated metric is also called a non-Archimedean metric or super-metric. Although some of the theorems for ultrametric spaces may seem strange at a first glance, they appear naturally in many applications.

This is a glossary of some terms used in Riemannian geometry and metric geometry — it doesn't cover the terminology of differential topology.

In functional analysis and related branches of mathematics, the Banach–Alaoglu theorem states that the closed unit ball of the dual space of a normed vector space is compact in the weak* topology. A common proof identifies the unit ball with the weak* topology as a closed subset of a product of compact sets with the product topology. As a consequence of Tychonoff's theorem, this product, and hence the unit ball within, is compact.

In mathematics, and especially general topology, the Euclidean topology is the natural topology induced on Euclidean n-space by the Euclidean metric.

Metric (mathematics) mathematical function that defines a distance between elements of a set

In mathematics, a metric or distance function is a function that defines a distance between each pair of elements of a set. A set with a metric is called a metric space. A metric induces a topology on a set, but not all topologies can be generated by a metric. A topological space whose topology can be described by a metric is called metrizable.

In mathematics, subharmonic and superharmonic functions are important classes of functions used extensively in partial differential equations, complex analysis and potential theory.

In the study of metric spaces in mathematics, there are various notions of two metrics on the same underlying space being "the same", or equivalent.

In mathematics, the concept of a generalised metric is a generalisation of that of a metric, in which the distance is not a real number but taken from an arbitrary ordered field.

In mathematics, a covering number is the number of spherical balls of a given size needed to completely cover a given space, with possible overlaps. Two related concepts are the packing number, the number of disjoint balls that fit in a space, and the metric entropy, the number of points that fit in a space when constrained to lie at some fixed minimum distance apart.

In metric geometry, asymptotic dimension of a metric space is a large-scale analog of Lebesgue covering dimension. The notion of asymptotic dimension was introduced my Mikhail Gromov in his 1993 monograph Asymptotic invariants of infinite groups in the context of geometric group theory, as a quasi-isometry invariant of finitely generated groups. As shown by Guoliang Yu, finitely generated groups of finite homotopy type with finite asymptotic dimension satisfy the Novikov conjecture. Asymptotic dimension has important applications in geometric analysis and index theory.

In the mathematical subject of geometric group theory, an acylindrically hyperbolic group is a group admitting a non-elementary 'acylindrical' isometric action on some geodesic hyperbolic metric space. This notion generalizes the notions of a hyperbolic group and of a relatively hyperbolic group and includes a significantly wider class of examples, such as mapping class groups and Out(Fn).

References