Frame Relay assembler/disassembler

Last updated

A FRAD (Frame Relay access device or Frame Relay assembler/disassembler) is a device that turns data packets into Frame Relay frames that can be sent over a Frame Relay network and turns the received Frame Relay frames into data packets. Its assembly and disassembly functionality is similar to a packet assembler/disassembler (PAD), which is used for accessing X.25 networks.

Related Research Articles

IEEE 802.2 is the original name of the ISO/IEC 8802-2 standard which defines logical link control (LLC) as the upper portion of the data link layer of the OSI Model. The original standard developed by the Institute of Electrical and Electronics Engineers (IEEE) in collaboration with the American National Standards Institute (ANSI) was adopted by the International Organization for Standardization (ISO) in 1998, but it still remains an integral part of the family of IEEE 802 standards for local and metropolitan networks.

Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on short path labels rather than long network addresses, thus avoiding complex lookups in a routing table and speeding traffic flows. The labels identify virtual links (paths) between distant nodes rather than endpoints. MPLS can encapsulate packets of various network protocols, hence the "multiprotocol" reference on its name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.

In computer networking, the maximum transmission unit (MTU) is the size of the largest protocol data unit (PDU) that can be communicated in a single network layer transaction. The MTU relates to, but is not identical to the maximum frame size that can be transported on the data link layer, e.g. Ethernet frame.

Frame Relay Wide area network technology

Frame Relay is a standardized wide area network technology that specifies the physical and data link layers of digital telecommunications channels using a packet switching methodology. Originally designed for transport across Integrated Services Digital Network (ISDN) infrastructure, it may be used today in the context of many other network interfaces.

In computer networking, cell relay refers to a method of statistically multiplexing small fixed-length packets, called "cells", to transport data between computers or kinds of network equipment. It is an unreliable, connection-oriented packet switched data communications protocol.

ALOHAnet, also known as the ALOHA System, or simply ALOHA, was a pioneering computer networking system developed at the University of Hawaii. ALOHAnet became operational in June, 1971, providing the first public demonstration of a wireless packet data network. ALOHA originally stood for Additive Links On-line Hawaii Area.

The data link layer, or layer 2, is the second layer of the seven-layer OSI model of computer networking. This layer is the protocol layer that transfers data between nodes on a network segment across the physical layer. The data link layer provides the functional and procedural means to transfer data between network entities and might provide the means to detect and possibly correct errors that may occur in the physical layer.

Medium access control Service layer in IEEE 802 network standards

In IEEE 802 LAN/MAN standards, the medium access control sublayer is the layer that controls the hardware responsible for interaction with the wired, optical or wireless transmission medium. The MAC sublayer and the logical link control (LLC) sublayer together make up the data link layer. Within the data link layer, the LLC provides flow control and multiplexing for the logical link, while the MAC provides flow control and multiplexing for the transmission medium.

LAPB

Link Access Procedure, Balanced (LAPB) implements the data link layer as defined in the X.25 protocol suite. LAPB is a bit-oriented protocol derived from HDLC that ensures that frames are error free and in the correct sequence. LAPB is specified in ITU-T Recommendation X.25 and ISO/IEC 7776. It implements the connection-mode data link service in the OSI Reference Model as defined by ITU-T Recommendation X.222.

A wireless distribution system (WDS) is a system enabling the wireless interconnection of access points in an IEEE 802.11 network. It allows a wireless network to be expanded using multiple access points without the traditional requirement for a wired backbone to link them. The notable advantage of WDS over other solutions is that it preserves the MAC addresses of client frames across links between access points.

Terminal node controller

A terminal node controller (TNC) is a device used by amateur radio operators to participate in AX.25 packet radio networks. It is similar in function to the Packet Assembler/Disassemblers used on X.25 networks, with the addition of a modem to convert baseband digital signals to audio tones.

A packet assembler/disassembler, abbreviated PAD is a communications device which provides multiple asynchronous terminal connectivity to an X.25 (packet-switching) network or host computer. It collects data from a group of terminals and places the data into X.25 packets (assembly). A PAD also does the reverse, it takes data packets from packet-switching network or host computer and returns them into a character stream that can be sent to the terminals (disassembly). A Frame Relay assembler/disassembler (FRAD) is a similar device for accessing Frame Relay networks.

Binary Synchronous Communication is an IBM character-oriented, half-duplex link protocol, announced in 1967 after the introduction of System/360. It replaced the synchronous transmit-receive (STR) protocol used with second generation computers. The intent was that common link management rules could be used with three different character encodings for messages. Six-bit Transcode looked backwards to older systems; USASCII with 128 characters and EBCDIC with 256 characters looked forward. Transcode disappeared very quickly but the EBCDIC and USASCII dialects of Bisync continued in use.

The International Packet Switched Service (IPSS) was the first international and commercial packet switching network. It was created in 1978 by a collaboration between Britain's Post Office Telecommunications, and the United States' Western Union International and Tymnet.

In computer networking, jumbo frames are Ethernet frames with more than 1500 bytes of payload, the limit set by the IEEE 802.3 standard. Commonly, jumbo frames can carry up to 9000 bytes of payload, but smaller and larger variations exist and some care must be taken using the term. Many Gigabit Ethernet switches and Gigabit Ethernet network interface cards can support jumbo frames. Some Fast Ethernet switches and Fast Ethernet network interface cards can also support jumbo frames.

NMEA 2000, abbreviated to NMEA2k or N2K and standardised as IEC 61162-3, is a plug-and-play communications standard used for connecting marine sensors and display units within ships and boats. Communication runs at 250 kilobits-per-second and allows any sensor to talk to any display unit or other device compatible with NMEA 2000 protocols. Electrically, NMEA 2000 is compatible with the Controller Area Network used on road vehicles and fuel engines. The higher-level protocol format is based on SAE J1939, with specific messages for the marine environment. Raymarine SeaTalk 2, Raymarine SeaTalkNG, Simrad Simnet, and Furuno CAN are rebranded implementations of NMEA 2000, though may use physical connectors different from the standardised DeviceNet Micro-C M12 5-pin screw connector, all of which are electrically compatible and can be directly connected.

The Berkeley Packet Filter (BPF) is a technology used in certain computer operating systems for programs that need to, among other things, analyze network traffic. It provides a raw interface to data link layers, permitting raw link-layer packets to be sent and received. It is available on most Unix-like operating systems. In addition, if the driver for the network interface supports promiscuous mode, it allows the interface to be put into that mode so that all packets on the network can be received, even those destined to other hosts.

A forwarding information base (FIB), also known as a forwarding table or MAC table, is most commonly used in network bridging, routing, and similar functions to find the proper output network interface to which the input interface should forward a packet. It is a dynamic table that maps MAC addresses to ports. It is the essential mechanism that separates network switches from Ethernet hubs. Content-addressable memory (CAM) is typically used to efficiently implement the FIB, thus it is sometimes called a CAM table.

The MultiLink Procedure (MLP) exists as an added upper sublayer of the Data Link Layer, operating between the Packet Layer and a multiplicity of single data link protocol functions (SLPs) in the Data Link Layer. A MultiLink Procedure (MLP) must perform the functions of accepting packets from the Packet Layer, distributing those packets across the available DCE or DTE SLPs for transmission to the DTE or DCE SLPs, respectively, and resequencing the packets received from the DTE or DCE SLPs for delivery to the DTE or DCE Packet Layer, respectively.

Time-Sensitive Networking (TSN) is a set of standards under development by the Time-Sensitive Networking task group of the IEEE 802.1 working group. The TSN task group was formed in November 2012 by renaming the existing Audio Video Bridging Task Group and continuing its work. The name changed as a result of the extension of the working area of the standardization group. The standards define mechanisms for the time-sensitive transmission of data over deterministic Ethernet networks.

References