GERAN

Last updated

GERAN is an abbreviation for GSM EDGE Radio Access Network. The standards for GERAN are maintained by the 3GPP (Third Generation Partnership Project). GERAN is a key part of GSM, and also of combined UMTS/GSM networks.

GSM standard to describe protocols for second generation digital cellular networks used by mobile phones

GSM is a standard developed by the European Telecommunications Standards Institute (ETSI) to describe the protocols for second-generation (2G) digital cellular networks used by mobile devices such as mobile phones and tablets. It was first deployed in Finland in December 1991. As of 2014, it has become the global standard for mobile communications – with over 90% market share, operating in over 193 countries and territories.

Enhanced Data Rates for GSM Evolution

Enhanced Data rates for GSM Evolution (EDGE) is a digital mobile phone technology that allows improved data transmission rates as a backward-compatible extension of GSM. EDGE is considered a pre-3G radio technology and is part of ITU's 3G definition. EDGE was deployed on GSM networks beginning in 2003 – initially by Cingular in the United States.

The 3rd Generation Partnership Project (3GPP) is a standards organization which develops protocols for mobile telephony. Its best known work is the development and maintenance of:

Contents

GERAN is the radio part of GSM/EDGE together with the network that joins the base stations (the Ater and Abis interfaces) and the base station controllers (A interfaces, etc.) The network represents the core of a GSM network, through which phone calls and packet data are routed from and to the PSTN and Internet to and from subscriber handsets. A mobile phone operator's network comprises one or more GERANs, coupled with UTRANs in the case of a UMTS/GSM network.

A GERAN without EDGE is a GRAN, but is otherwise identical in concept.

A GERAN without GSM is an ERAN.

See also

Related Research Articles

General Packet Radio Service (GPRS) is a packet oriented mobile data standard on the 2G and 3G cellular communication network's global system for mobile communications (GSM). GPRS was established by European Telecommunications Standards Institute (ETSI) in response to the earlier CDPD and i-mode packet-switched cellular technologies. It is now maintained by the 3rd Generation Partnership Project (3GPP).

The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunications Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.

The GPRS core network is the central part of the general packet radio service (GPRS) which allows 2G, 3G and WCDMA mobile networks to transmit IP packets to external networks such as the Internet. The GPRS system is an integrated part of the GSM network switching subsystem.

Mobility management is one of the major functions of a GSM or a UMTS network that allows mobile phones to work. The aim of mobility management is to track where the subscribers are, allowing calls, SMS and other mobile phone services to be delivered to them.

Network switching subsystem (NSS) is the component of a GSM system that carries out call out and mobility management functions for mobile phones roaming on the network of base stations. It is owned and deployed by mobile phone operators and allows mobile devices to communicate with each other and telephones in the wider public switched telephone network (PSTN). The architecture contains specific features and functions which are needed because the phones are not fixed in one location.

In telecommunications networks, RANAP is a protocol specified by 3GPP in TS 25.413 and used in UMTS for signaling between the Core Network, which can be a MSC or SGSN, and the UTRAN. RANAP is carried over Iu-interface.

UMTS Terrestrial Radio Access Network

UTRAN is a collective term for the network and equipment that connects mobile handsets to the public telephone network or the Internet. It contains the base stations, which are called Node B's and Radio Network Controllers (RNCs) which make up the UMTS radio access network. This communications network, commonly referred to as 3G, can carry many traffic types from real-time Circuit Switched to IP based Packet Switched. The UTRAN allows connectivity between the UE and the core network.

Multimedia Broadcast Multicast Services (MBMS) is a point-to-multipoint interface specification for existing and upcoming 3GPP cellular networks, which is designed to provide efficient delivery of broadcast and multicast services, both within a cell as well as within the core network. For broadcast transmission across multiple cells, it defines transmission via single-frequency network configurations. The specification is referred to as Evolved Multimedia Broadcast Multicast Services (eMBMS) when transmissions are delivered through an LTE network. eMBMS is also known as LTE Broadcast.

A radio access network (RAN) is part of a mobile telecommunication system. It implements a radio access technology. Conceptually, it resides between a device such as a mobile phone, a computer, or any remotely controlled machine and provides connection with its core network (CN). Depending on the standard, mobile phones and other wireless connected devices are varyingly known as user equipment (UE), terminal equipment, mobile station (MS), etc. RAN functionality is typically provided by a silicon chip residing in both the core network as well as the user equipments. See the following diagram:

 CN  / ⧵  / ⧵  RAN RAN  / ⧵ / ⧵ UE UE UE UE 
E-UTRA air interface of 3GPP LTE upgrade path for mobile networks

E-UTRA is the air interface of 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) upgrade path for mobile networks. It is an acronym for Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access, also referred to as the 3GPP work item on the Long Term Evolution (LTE) also known as the Evolved Universal Terrestrial Radio Access (E-UTRA) in early drafts of the 3GPP LTE specification. E-UTRAN is the initialism of Evolved UMTS Terrestrial Radio Access Network and is the combination of E-UTRA, user equipment (UE), and E-UTRAN Node B or Evolved Node B (EnodeB).

Generic Access Network

Generic Access Network (GAN) extends mobile voice, data and multimedia applications over IP networks. Unlicensed Mobile Access (UMA) is the commercial name used by mobile carriers for external IP access into their core networks. The latest generation system is named Wi-Fi Calling or VoWiFi by a number of handset manufacturers, including Apple and Samsung, a move that is being mirrored by carriers like T-Mobile US and Vodafone.

Cell Broadcast (messaging) mobile technology feature defined by the ETSI’s GSM committee and is part of the GSM standard. It is also known as Short Message Service-Cell Broadcast. (SMS-CB)

Cell Broadcast/Cell Information (CB) is a method of sending messages to multiple mobile telephone users in a defined area at the same time. It is defined by the ETSI’s GSM committee and is part of the 2G, 3G, 4G LTE (telecommunication) and 5G standards. It is also known as Short Message Service-Cell Broadcast (SMS-CB).

Radio Base Station (RBS) is the commercial name given to the family of Base Stations developed by Ericsson, typically constituting a sizable part of the Radio Access Network (RAN). Radio Base Station is also the generic name to be used instead of BTS which are typically denoting GSM-era radio base station technology. For other vendors, specific equipment names are used such as Huawei DBS or NSN Flexi base stations.

System Architecture Evolution (SAE) is the core network architecture of 3GPP's LTE wireless communication standard.

HNBAP is a control protocol found in Home Node B networks on the Iu-h interface.

E-UTRAN Node B, also known as Evolved Node B, is the element in E-UTRA of LTE that is the evolution of the element Node B in UTRA of UMTS. It is the hardware that is connected to the mobile phone network that communicates directly wirelessly with mobile handsets (UEs), like a base transceiver station (BTS) in GSM networks.

References