GSM Interworking Profile

Last updated

The GSM Interworking Profile, usually abbreviated to GIP and sometimes to IWP, is a profile for DECT that allows a DECT base station to form part of a GSM network, given suitable handsets. While proposed and tested, notably in Switzerland in 1995, the system has never been commercially deployed. Infrastructure issues make it less practical and useful to implement than the more recent GAN/UMA system, which can make use of usually unmetered and neutral Internet service to provide the connection back to the network operator.

Contents

Description

Like the later GAN/UMA standard, GIP makes use of a technology that doesn't require licensed spectrum to expand capacity and allow end users, in theory, to improve coverage in areas difficult to reach via large, external, cell towers.

GIP is a DECT profile, meaning a set of protocols that runs over the base DECT system. The most popular profile for DECT is GAP, which is used to provide cordless phone service, but this is not used for GIP.

In GIP, several of the GSM lower level protocols are replaced by DECT-friendly equivalents. Voice channels make use of 32 kbit/s ADPCM channels rather than 13 kbit/s FR/EFR/AMR channels, for example.

The system supports handoff, and authentication is done via the GSM SIM card as normal. However, DECT terminals need to authenticate themselves against the base station, and this added layer is implementation dependent.

The base station is usually connected back to the GSM network via an ISDN line. An "A interface" is implemented over the ISDN line just as it would be for a BSC. This allows multiple GSM calls and GSM control data to be multiplexed over the 64 kbit/s ISDN B channels.

Deployments

While GIP was deployed to some success at Telecom '95 in Geneva, the system has not been commercially deployed since. Hybrid DECT/GSM devices have appeared, but these have essentially been "Two phones in a box" systems that combine the functionality of a standard GAP phone with a GSM phone, so that a person can receive and make calls on either their home phone line or a mobile network without having to use two phones. An example of this approach is BT's/Ericsson's OnePhone service.

Most probably, the fact that the system requires an ISDN connection, which in most countries where ISDN is popular is priced by time used, has made GIP a difficult sell. In practice, the system appears to be oriented towards carriers instead of individuals, and carriers can more easily create microcells using their own spectrum, running ordinary GSM and not requiring the use of special handsets.

With the advent of the Internet and widespread availability of high speed Internet connections, GIP could be redesigned to make use of Internet instead of ISDN connections. However, the industry has gone in the direction of using GAN/UMA, which substitutes an 802.11 or Bluetooth air interface for GSM/UMTS's and as such can use unmodified commodity infrastructure.

Related Research Articles

Digital enhanced cordless telecommunications international cordless phone standard

Digital enhanced cordless telecommunications , usually known by the acronym DECT, is a standard primarily used for creating cordless telephone systems. It originated in Europe, where it is the universal standard, replacing earlier cordless phone standards, such as 900 MHz CT1 and CT2.

GSM Standard to describe protocols for second generation digital cellular networks used by mobile phones

The Global System for Mobile Communications (GSM) is a standard developed by the European Telecommunications Standards Institute (ETSI) to describe the protocols for second-generation (2G) digital cellular networks used by mobile devices such as mobile phones and tablets. It was first deployed in Finland in December 1991. By the mid-2010s, it became a global standard for mobile communications achieving over 90% market share, and operating in over 193 countries and territories.

General Packet Radio Service (GPRS) is a packet oriented mobile data standard on the 2G and 3G cellular communication network's global system for mobile communications (GSM). GPRS was established by European Telecommunications Standards Institute (ETSI) in response to the earlier CDPD and i-mode packet-switched cellular technologies. It is now maintained by the 3rd Generation Partnership Project (3GPP).

Integrated Services Digital Network Set of communication standards

Integrated Services Digital Network (ISDN) is a set of communication standards for simultaneous digital transmission of voice, video, data, and other network services over the traditional circuits of the public switched telephone network. It was first defined in 1988 in the CCITT "Red Book". Prior to ISDN, the telephone system was viewed as a way to transport voice, with some special services available for data. The key feature of ISDN is that it integrates speech and data on the same lines, adding features that were not available in the classic telephone system. The ISDN standards define several kinds of access interfaces, such as Basic Rate Interface (BRI), Primary Rate Interface (PRI), Narrowband ISDN (N-ISDN), and Broadband ISDN (B-ISDN).

Time-division multiple access channel access method for shared medium networks

Time-division multiple access (TDMA) is a channel access method for shared-medium networks. It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot. This allows multiple stations to share the same transmission medium while using only a part of its channel capacity. TDMA is used in the digital 2G cellular systems such as Global System for Mobile Communications (GSM), IS-136, Personal Digital Cellular (PDC) and iDEN, and in the Digital Enhanced Cordless Telecommunications (DECT) standard for portable phones. TDMA was first used in satellite communication systems by Western Union in its Westar 3 communications satellite in 1979. It is now used extensively in satellite communications, combat-net radio systems, and passive optical network (PON) networks for upstream traffic from premises to the operator. For usage of Dynamic TDMA packet mode communication, see below.

The Universal Mobile Telecommunications System (UMTS) is a third generation mobile cellular system for networks based on the GSM standard. Developed and maintained by the 3GPP, UMTS is a component of the International Telecommunications Union IMT-2000 standard set and compares with the CDMA2000 standard set for networks based on the competing cdmaOne technology. UMTS uses wideband code division multiple access (W-CDMA) radio access technology to offer greater spectral efficiency and bandwidth to mobile network operators.

Digital subscriber line is a family of technologies that are used to transmit digital data over telephone lines. In telecommunications marketing, the term DSL is widely understood to mean asymmetric digital subscriber line (ADSL), the most commonly installed DSL technology, for Internet access.

Signaling System No. 7 (SS7) is a set of telephony signaling protocols developed in 1975, which is used to set up and tear down telephone calls in most parts of the world-wide public switched telephone network (PSTN). The protocol also performs number translation, local number portability, prepaid billing, Short Message Service (SMS), and other services.

Network switching subsystem (NSS) is the component of a GSM system that carries out call out and mobility management functions for mobile phones roaming on the network of base stations. It is owned and deployed by mobile phone operators and allows mobile devices to communicate with each other and telephones in the wider public switched telephone network (PSTN). The architecture contains specific features and functions which are needed because the phones are not fixed in one location.

Base station subsystem The section of a cellular telephone network responsible for handling traffic and signaling

The base station subsystem (BSS) is the section of a traditional cellular telephone network which is responsible for handling traffic and signaling between a mobile phone and the network switching subsystem. The BSS carries out transcoding of speech channels, allocation of radio channels to mobile phones, paging, transmission and reception over the air interface and many other tasks related to the radio network.

A microcell is a cell in a mobile phone network served by a low power cellular base station (tower), covering a limited area such as a mall, a hotel, or a transportation hub. A microcell is usually larger than a picocell, though the distinction is not always clear. A microcell uses power control to limit the radius of its coverage area.

Business telephone system Multiline telephone system typically used in business environments

A business telephone system is a multiline telephone system typically used in business environments, encompassing systems ranging in technology from the key telephone system (KTS) to the private branch exchange (PBX).

The Generic Access Profile (GAP) describes a set of mandatory requirements to allow any conforming DECT Fixed Part (base) to interoperate with any conforming DECT Portable Part (handset) to provide basic telephony services when attached to a 3.1 kHz telephone network.

The Personal Handy-phone System (PHS), also marketed as the Personal Communication Telephone (PCT) in Thailand, and the Personal Access System (PAS) and commercially branded as Xiaolingtong in Mainland China, is a mobile network system operating in the 1880–1930 MHz frequency band, used mainly in Japan, China, Taiwan, and some other Asian countries and regions.

ITU-T Recommendation Q.931 is the ITU standard ISDN connection control signalling protocol, forming part of Digital Subscriber Signalling System No. 1. Unlike connectionless systems like UDP, ISDN is connection oriented and uses explicit signalling to manage call state: Q.931. Q.931 typically does not carry user data. Q.931 does not have a direct equivalent in the Internet Protocol stack, but can be compared to SIP. Q.931 does not provide flow control or perform retransmission, since the underlying layers are assumed to be reliable and the circuit-oriented nature of ISDN allocates bandwidth in fixed increments of 64 kbit/s. Amongst other things, Q.931 manages connection setup and breakdown. Like TCP, Q.931 documents both the protocol itself and a protocol state machine.

Generic Access Network (GAN) is a protocol that extends mobile voice, data and multimedia applications over IP networks. Unlicensed Mobile Access (UMA) is the commercial name used by mobile carriers for external IP access into their core networks. The latest generation system is named Wi-Fi Calling or VoWiFi by a number of handset manufacturers, including Apple and Samsung, a move that is being mirrored by carriers like T-Mobile US and Vodafone. The service is dependent on IMS, IPsec, IWLAN and ePDG.

Mobile VoIP or simply mVoIP is an extension of mobility to a Voice over IP network. Two types of communication are generally supported: cordless/DECT/PCS protocols for short range or campus communications where all base stations are linked into the same LAN, and wider area communications using 3G/4G protocols.

The Um interface is the air interface for the GSM mobile telephone standard. It is the interface between the mobile station (MS) and the Base transceiver station (BTS). It is called Um because it is the mobile analog to the U interface of ISDN. Um is defined in the GSM 04.xx and 05.xx series of specifications. Um can also support GPRS packet-oriented communication.

Private GSM solutions, appeared after the deregulation of the DECT guardband in some countries, allow users and businesses to reduce their costs without impacting in their performance and offering a number of added value services. All of this thanks to the ability to create private mobile GSM networks, enabling mobile phone users to access the same services and features as users of a PBX extension.

Cordless Advanced Technology—internet and quality (CAT-iq) is a technology initiative from the Digital Enhanced Cordless Telecommunications (DECT) Forum, based on ETSI TS 102 527 New Generation DECT (NG-DECT) European standard series.

References

    1. ETSI: ETR 341: Radio Equipment and Systems (RES) DECT/GSM Internetworking Overview
    2. DECT Web: DECT/GSM DUAL MODE and the advent of the ONEPHONE SERVICE

    See also