In mathematics, the generalized Pochhammer symbol of parameter and partition generalizes the classical Pochhammer symbol, named after Leo August Pochhammer, and is defined as
Mathematics includes the study of such topics as quantity, structure, space, and change.
In number theory and combinatorics, a partition of a positive integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. For example, 4 can be partitioned in five distinct ways:
Leo August Pochhammer was a Prussian mathematician who was educated in Berlin, obtaining his Ph.D. in 1863 under Ernst Kummer. He became a lecturer in 1874, then professor of mathematics at the Christian-Albrechts-Universität of Kiel (1877-1919), where he was appointed Rektor in 1893. He is known for his work on special functions and introduced the Pochhammer symbol, now generally used for expressing hypergeometric functions in a compact notation.
It is used in multivariate analysis.
In mathematics, the continuum hypothesis is a hypothesis about the possible sizes of infinite sets. It states:
There is no set whose cardinality is strictly between that of the integers and the real numbers.
Freiling's axiom of symmetry (AX) is a set-theoretic axiom proposed by Chris Freiling. It is based on intuition of Stuart Davidson but the mathematics behind it goes back to Wacław Sierpiński.
In mathematics, the falling factorial is defined as the polynomial
In mathematics and theoretical physics, the term quantum group denotes various kinds of noncommutative algebras with additional structure. In general, a quantum group is some kind of Hopf algebra. There is no single, all-encompassing definition, but instead a family of broadly similar objects.
In mathematics, limit cardinals are certain cardinal numbers. A cardinal number λ is a weak limit cardinal if λ is neither a successor cardinal nor zero. This means that one cannot "reach" λ from another cardinal by repeated successor operations. These cardinals are sometimes called simply "limit cardinals" when the context is clear.
In mathematics, the beth numbers are a certain sequence of infinite cardinal numbers, conventionally written , where is the second Hebrew letter (beth). The beth numbers are related to the aleph numbers, but there may be numbers indexed by that are not indexed by .
In mathematics, particularly in mathematical logic and set theory, a club set is a subset of a limit ordinal which is closed under the order topology, and is unbounded relative to the limit ordinal. The name club is a contraction of "closed and unbounded".
In mathematics, particularly in set theory, if is a regular uncountable cardinal then , the filter of all sets containing a club subset of , is a -complete filter closed under diagonal intersection called the club filter.
In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.
In mathematics, a compact quantum group is an abstract structure on a unital separable C*-algebra axiomatized from those that exist on the commutative C*-algebra of "continuous complex-valued functions" on a compact quantum group.
In probability theory, the Chinese restaurant process is a discrete-time stochastic process, analogous to seating customers at tables in a Chinese restaurant. Imagine a Chinese restaurant with an infinite number of circular tables, each with infinite capacity. Customer 1 sits at the first table. The next customer either sits at the same table as customer 1, or the next table. This continues, with each customer choosing to either sit at an occupied table with a probability proportional to the number of customers already there, or an unoccupied table. At time n, the n customers have been partitioned among m ≤ n tables. The results of this process are exchangeable, meaning the order in which the customers sit does not affect the probability of the final distribution. This property greatly simplifies a number of problems in population genetics, linguistic analysis, and image recognition.
A quasiprobability distribution is a mathematical object similar to a probability distribution but which relaxes some of Kolmogorov's axioms of probability theory. Although quasiprobabilities share several of general features with ordinary probabilities, such as, crucially, the ability to yield expectation values with respect to the weights of the distribution, they all violate the σ-additivity axiom, because regions integrated under them do not represent probabilities of mutually exclusive states. To compensate, some quasiprobability distributions also counterintuitively have regions of negative probability density, contradicting the first axiom. Quasiprobability distributions arise naturally in the study of quantum mechanics when treated in phase space formulation, commonly used in quantum optics, time-frequency analysis, and elsewhere.
In set theory, Easton's theorem is a result on the possible cardinal numbers of powersets. Easton (1970) showed via forcing that
In directional statistics, the von Mises–Fisher distribution, is a probability distribution on the -dimensional sphere in . If the distribution reduces to the von Mises distribution on the circle.
The notion of cylindric algebra, invented by Alfred Tarski, arises naturally in the algebraization of equational first-order logic. This is comparable to the role Boolean algebras play for propositional logic. Indeed, cylindric algebras are Boolean algebras equipped with additional cylindrification operations that model quantification and equality. They differ from polyadic algebras in that the latter do not model equality.
In mathematics, the hypergeometric function of a matrix argument is a generalization of the classical hypergeometric series. It is a function defined by an infinite summation which can be used to evaluate certain multivariate integrals.
In mathematics, the Jack function is a generalization of the Jack polynomial, introduced by Henry Jack. The Jack polynomial is a homogeneous, symmetric polynomial which generalizes the Schur and zonal polynomials, and is in turn generalized by the Heckman–Opdam polynomials and Macdonald polynomials.
In the mathematical theory of special functions, the Pochhammer k-symbol and the k-gamma function, introduced by Rafael Díaz and Eddy Pariguan are generalizations of the Pochhammer symbol and gamma function. They differ from the Pochhammer symbol and gamma function in that they can be related to a general arithmetic progression in the same manner as those are related to the sequence of consecutive integers.
The Jenkins–Traub algorithm for polynomial zeros is a fast globally convergent iterative method published in 1970 by Michael A. Jenkins and Joseph F. Traub. They gave two variants, one for general polynomials with complex coefficients, commonly known as the "CPOLY" algorithm, and a more complicated variant for the special case of polynomials with real coefficients, commonly known as the "RPOLY" algorithm. The latter is "practically a standard in black-box polynomial root-finders".
In statistics, the generalized Dirichlet distribution (GD) is a generalization of the Dirichlet distribution with a more general covariance structure and almost twice the number of parameters. Random variables with a GD distribution are not completely neutral.
The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.
This number theory-related article is a stub. You can help Wikipedia by expanding it. |