Generating function (physics)

Last updated

In physics, and more specifically in Hamiltonian mechanics, a generating function is, loosely, a function whose partial derivatives generate the differential equations that determine a system's dynamics. Common examples are the partition function of statistical mechanics, the Hamiltonian, and the function which acts as a bridge between two sets of canonical variables when performing a canonical transformation.

Contents

In canonical transformations

There are four basic generating functions, summarized by the following table: [1]

Generating functionIts derivatives
and
and
and
and

Example

Sometimes a given Hamiltonian can be turned into one that looks like the harmonic oscillator Hamiltonian, which is

For example, with the Hamiltonian

where p is the generalized momentum and q is the generalized coordinate, a good canonical transformation to choose would be

 

 

 

 

(1)

This turns the Hamiltonian into

which is in the form of the harmonic oscillator Hamiltonian.

The generating function F for this transformation is of the third kind,

To find F explicitly, use the equation for its derivative from the table above,

and substitute the expression for P from equation ( 1 ), expressed in terms of p and Q:

Integrating this with respect to Q results in an equation for the generating function of the transformation given by equation ( 1 ):

To confirm that this is the correct generating function, verify that it matches ( 1 ):

See also

Related Research Articles

Hamiltonian mechanics Formulation of classical mechanics using momenta

Hamiltonian mechanics emerged in 1833 as a reformulation of Lagrangian mechanics. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.

Poisson bracket Operation in Hamiltonian mechanics

In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.

In physics, Liouville's theorem, named after the French mathematician Joseph Liouville, is a key theorem in classical statistical and Hamiltonian mechanics. It asserts that the phase-space distribution function is constant along the trajectories of the system—that is that the density of system points in the vicinity of a given system point traveling through phase-space is constant with time. This time-independent density is in statistical mechanics known as the classical a priori probability.

In theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related alternative formulations of classical mechanics. It was developed by many scientists and mathematicians during the 18th century and onward, after Newtonian mechanics. Since Newtonian mechanics considers vector quantities of motion, particularly accelerations, momenta, forces, of the constituents of the system, an alternative name for the mechanics governed by Newton's laws and Euler's laws is vectorial mechanics.

In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (q, p, t) → that preserves the form of Hamilton's equations. This is sometimes known as form invariance. It need not preserve the form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations and Liouville's theorem.

Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator lowers the number of particles in a given state by one. A creation operator increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator. In many subfields of physics and chemistry, the use of these operators instead of wavefunctions is known as second quantization. They were introduced by Paul Dirac.

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,

In mathematics and classical mechanics, canonical coordinates are sets of coordinates on phase space which can be used to describe a physical system at any given point in time. Canonical coordinates are used in the Hamiltonian formulation of classical mechanics. A closely related concept also appears in quantum mechanics; see the Stone–von Neumann theorem and canonical commutation relations for details.

Canonical quantization Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory, to the greatest extent possible.

A Hamiltonian system is a dynamical system governed by Hamilton's equations. In physics, this dynamical system describes the evolution of a physical system such as a planetary system or an electron in an electromagnetic field. These systems can be studied in both Hamiltonian mechanics and dynamical systems theory.

In mathematics and physics, a Hamiltonian vector field on a symplectic manifold is a vector field defined for any energy function or Hamiltonian. Named after the physicist and mathematician Sir William Rowan Hamilton, a Hamiltonian vector field is a geometric manifestation of Hamilton's equations in classical mechanics. The integral curves of a Hamiltonian vector field represent solutions to the equations of motion in the Hamiltonian form. The diffeomorphisms of a symplectic manifold arising from the flow of a Hamiltonian vector field are known as canonical transformations in physics and (Hamiltonian) symplectomorphisms in mathematics.

Routhian mechanics Formulation of classical mechanics

In classical mechanics, Routh's procedure or Routhian mechanics is a hybrid formulation of Lagrangian mechanics and Hamiltonian mechanics developed by Edward John Routh. Correspondingly, the Routhian is the function which replaces both the Lagrangian and Hamiltonian functions. Routhian mechanics is equivalent to Lagrangian mechanics and Hamiltonian mechanics, and introduces no new physics. It offers an alternative way to solve mechanical problems.

Canonical quantum gravity A formulation of general relativity

In physics, canonical quantum gravity is an attempt to quantize the canonical formulation of general relativity. It is a Hamiltonian formulation of Einstein's general theory of relativity. The basic theory was outlined by Bryce DeWitt in a seminal 1967 paper, and based on earlier work by Peter G. Bergmann using the so-called canonical quantization techniques for constrained Hamiltonian systems invented by Paul Dirac. Dirac's approach allows the quantization of systems that include gauge symmetries using Hamiltonian techniques in a fixed gauge choice. Newer approaches based in part on the work of DeWitt and Dirac include the Hartle–Hawking state, Regge calculus, the Wheeler–DeWitt equation and loop quantum gravity.

In classical mechanics, action-angle coordinates are a set of canonical coordinates useful in solving many integrable systems. The method of action-angles is useful for obtaining the frequencies of oscillatory or rotational motion without solving the equations of motion. Action-angle coordinates are chiefly used when the Hamilton–Jacobi equations are completely separable. Action-angle variables define an invariant torus, so called because holding the action constant defines the surface of a torus, while the angle variables parameterize the coordinates on the torus.

The Dirac bracket is a generalization of the Poisson bracket developed by Paul Dirac to treat classical systems with second class constraints in Hamiltonian mechanics, and to thus allow them to undergo canonical quantization. It is an important part of Dirac's development of Hamiltonian mechanics to elegantly handle more general Lagrangians; specifically, when constraints are at hand, so that the number of apparent variables exceeds that of dynamical ones. More abstractly, the two-form implied from the Dirac bracket is the restriction of the symplectic form to the constraint surface in phase space.

In classical mechanics, a physical system is termed a monogenic system if the force acting on the system can be modelled in a particular, especially convenient mathematical form. The systems that are typically studied in physics are monogenic. The term was introduced by Cornelius Lanczos in his book The Variational Principles of Mechanics (1970).

<i>Classical Mechanics</i> (Goldstein) Graduate textbook

Classical Mechanics is a textbook about that subject written by Herbert Goldstein, a professor at Columbia University. Intended for advanced undergraduate and beginning graduate students, it has been one of the standard references in its subject around the world since its first publication in 1951.

Lagrangian mechanics Formulation of classical mechanics

In physics, Lagrangian mechanics is a formulation of classical mechanics founded on the stationary-action principle. It was introduced by the Italian-French mathematician and astronomer Joseph-Louis Lagrange in his 1788 work, Mécanique analytique.

In physics and geometry, there are two closely related vector spaces, usually three-dimensional but in general of any finite dimension. Position space is the set of all position vectorsr in space, and has dimensions of length; a position vector defines a point in space. Momentum space is the set of all momentum vectorsp a physical system can have; the momentum vector of a particle corresponds to its motion, with units of [mass][length][time]−1.

Relativistic Lagrangian mechanics Mathematical formulation of special and general relativity

In theoretical physics, relativistic Lagrangian mechanics is Lagrangian mechanics applied in the context of special relativity and general relativity.

References

  1. Goldstein, Herbert; Poole, C. P.; Safko, J. L. (2001). Classical Mechanics (3rd ed.). Addison-Wesley. p. 373. ISBN   978-0-201-65702-9.

Further reading