Giancarlo Genta

Last updated

Giancarlo Genta (born 1948 in Turin, Italy) is Professor of Machine Design and Construction at the Polytechnic University of Turin. His areas of professional interest include vibration, vehicle design, magnetic bearings, and rotordynamics. He has written or co-authored more than 50 articles in professional publications. He has published extensively in the field of SETI research.

Since 2018 he is the chair of the automotive evolution class at Politecnico di Torino.

Selected publications

Related Research Articles

<span class="mw-page-title-main">Mechanical engineering</span> Engineering discipline

Mechanical engineering is the study of physical machines that may involve force and movement. It is an engineering branch that combines engineering physics and mathematics principles with materials science, to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering branches.

<span class="mw-page-title-main">Terraforming</span> Hypothetical planetary engineering process

Terraforming or terraformation ("Earth-shaping") is the hypothetical process of deliberately modifying the atmosphere, temperature, surface topography or ecology of a planet, moon, or other body to be similar to the environment of Earth to make it habitable for humans to live on.

<span class="mw-page-title-main">Gyroscope</span> Device for measuring or maintaining orientation and angular velocity

A gyroscope is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel or disc in which the axis of rotation is free to assume any orientation by itself. When rotating, the orientation of this axis is unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum.

<span class="mw-page-title-main">Center of mass</span> Unique point where the weighted relative position of the distributed mass sums to zero

In physics, the center of mass of a distribution of mass in space is the unique point where the weighted relative position of the distributed mass sums to zero. This is the point to which a force may be applied to cause a linear acceleration without an angular acceleration. Calculations in mechanics are often simplified when formulated with respect to the center of mass. It is a hypothetical point where the entire mass of an object may be assumed to be concentrated to visualise its motion. In other words, the center of mass is the particle equivalent of a given object for application of Newton's laws of motion.

An accelerometer is a tool that measures proper acceleration. Proper acceleration is the acceleration of a body in its own instantaneous rest frame; this is different from coordinate acceleration, which is acceleration in a fixed coordinate system. For example, an accelerometer at rest on the surface of the Earth will measure an acceleration due to Earth's gravity, straight upwards of g ≈ 9.81 m/s2. By contrast, accelerometers in free fall will measure zero.

Torsional vibration is angular vibration of an object—commonly a shaft along its axis of rotation. Torsional vibration is often a concern in power transmission systems using rotating shafts or couplings where it can cause failures if not controlled. A second effect of torsional vibrations applies to passenger cars. Torsional vibrations can lead to seat vibrations or noise at certain speeds. Both reduce the comfort.

Luca Turin is a biophysicist and writer with a long-standing interest in bioelectronics, the sense of smell, perfumery, and the fragrance industry.

Rotordynamics, also known as rotor dynamics, is a specialized branch of applied mechanics concerned with the behavior and diagnosis of rotating structures. It is commonly used to analyze the behavior of structures ranging from jet engines and steam turbines to auto engines and computer disk storage. At its most basic level, rotor dynamics is concerned with one or more mechanical structures (rotors) supported by bearings and influenced by internal phenomena that rotate around a single axis. The supporting structure is called a stator. As the speed of rotation increases the amplitude of vibration often passes through a maximum that is called a critical speed. This amplitude is commonly excited by imbalance of the rotating structure; everyday examples include engine balance and tire balance. If the amplitude of vibration at these critical speeds is excessive, then catastrophic failure occurs. In addition to this, turbomachinery often develop instabilities which are related to the internal makeup of turbomachinery, and which must be corrected. This is the chief concern of engineers who design large rotors.

Frederick Nelson was professor emeritus of mechanical engineering at Tufts University School of Engineering in Medford, Massachusetts, USA. His areas of professional interest included acoustics, vibration, shock (mechanics) and rotordynamics. He wrote or co-authored more than 50 articles in professional publications. He wrote a monograph entitled An Introduction to Rotordynamics which was published posthumously by SAVIAC. Professor Nelson graduated from the Tufts College of Engineering in 1954 and received his Ph.D. in applied mechanics from Harvard University in 1961. He joined the Tufts faculty in 1955. He was Dean of the College of Engineering from 1980 to 1994.

<span class="mw-page-title-main">Bently Nevada</span> Technology and service company

Bently Nevada is an asset protection and condition monitoring hardware, software and service company for industrial plant-wide operations. Its products are used to monitor the mechanical condition of rotating equipment in a wide variety of industries including oil and gas production, hydroelectric, wind, hydrocarbon processing, electric power generation, pulp and paper, mining, water and wastewater treatment. The company was founded in 1961 by Don Bently. Bently Nevada is headquartered in Minden, Nevada, about one hour south of Reno. Don Bently was the first to manufacture a commercially successful eddy-current proximity probe which measured vibration in high-speed turbomachinery by allowing the direct observation of the rotating shaft. The company also performed research in the field of rotordynamics, furthering knowledge of machinery malfunctions such as shaft cracks and fluid-induced instabilities. Its research also helped refine the equations used to describe vibratory behavior in rotordynamic systems.

In classical mechanics, analytical dynamics, also known as classical dynamics or simply dynamics, is concerned with the relationship between motion of bodies and its causes, namely the forces acting on the bodies and the properties of the bodies, particularly mass and moment of inertia. The foundation of modern-day dynamics is Newtonian mechanics and its reformulation as Lagrangian mechanics and Hamiltonian mechanics.

Helicopter dynamics is a field within aerospace engineering concerned with theoretical and practical aspects of helicopter flight. Its comprises helicopter aerodynamics, stability, control, structural dynamics, vibration, and aeroelastic and aeromechanical stability.

<span class="mw-page-title-main">Space tether</span> Type of tether

Space tethers are long cables which can be used for propulsion, momentum exchange, stabilization and attitude control, or maintaining the relative positions of the components of a large dispersed satellite/spacecraft sensor system. Depending on the mission objectives and altitude, spaceflight using this form of spacecraft propulsion is theorized to be significantly less expensive than spaceflight using rocket engines.

Reza Nakhaie Jazar also known as Reza N. Jazar is a professor of Mechanical engineering at RMIT University.

<span class="mw-page-title-main">Planetary science</span> Science of planets and planetary systems

Planetary science is the scientific study of planets, celestial bodies and planetary systems and the processes of their formation. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, which originally grew from astronomy and Earth science, and now incorporates many disciplines, including planetary geology, cosmochemistry, atmospheric science, physics, oceanography, hydrology, theoretical planetary science, glaciology, and exoplanetology. Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

Isaac Michael Ross is a Distinguished Professor and Program Director of Control and Optimization at the Naval Postgraduate School in Monterey, CA. He has published a highly-regarded textbook on optimal control theory and seminal papers in pseudospectral optimal control theory, energy-sink theory, the optimization and deflection of near-Earth asteroids and comets, robotics, attitude dynamics and control, orbital mechanics, real-time optimal control and unscented optimal control. The Kang–Ross–Gong theorem, Ross' π lemma, Ross' time constant, the Ross–Fahroo lemma, and the Ross–Fahroo pseudospectral method are all named after him.

<span class="mw-page-title-main">Nils Otto Myklestad</span> American engineer and professor (1909–1972)

Nils Otto Myklestad was an American mechanical engineer and engineering professor. An authority on mechanical vibration, he was employed by a number of important US engineering firms and served on the faculty of several major engineering universities. Myklestad made significant contributions to both engineering practice and engineering education, publishing a number of widely influential technical journal papers and textbooks. He also was granted five US patents during his career.

<span class="mw-page-title-main">Isaac Elishakoff</span> Distinguished Research Professor in the Ocean and Mechanical Engineering

Isaac Elishakoff is a Distinguished Research Professor in the Ocean and Mechanical Engineering Department in the Florida Atlantic University, Boca Raton, Florida. He is an authoritative figure in the broad area of mechanics. He has made several contributions in the areas of random vibrations, solid mechanics of composite material, semi-inverse problems of vibrations and stability, functionally graded material structures, and nanotechnology.

Amitabha Ghosh is an Indian researcher, administrator and educator. He currently holds the position of Honorary Scientist, Indian National Science Academy and Honorary Distinguished Professor in the Aerospace Engineering and Applied Mechanics Department at the Indian Institute of Engineering Science and Technology, Shibpur, Howrah, West Bengal. He is an Emeritus Senior Fellow of the Alexander von Humboldt Foundation and a Fellow of The National Academy of Sciences, India, of which he was elected a Senior Scientist Platinum Jubilee Fellow in 2012. Ghosh has made contributions in various fields, including fundamental and applied research, technology development, administration and social development.

<span class="mw-page-title-main">Galip Ulsoy</span> Prof. of mechanical engineering

Ali Galip Ulsoy is an academic at the University of Michigan (UM), Ann Arbor, where he is the C.D. Mote, Jr. Distinguished University Professor Emeritus of Mechanical Engineering and the William Clay Ford Professor Emeritus of Manufacturing.