Goldie's theorem

Last updated

In mathematics, Goldie's theorem is a basic structural result in ring theory, proved by Alfred Goldie during the 1950s. What is now termed a right Goldie ring is a ring R that has finite uniform dimension (="finite rank") as a right module over itself, and satisfies the ascending chain condition on right annihilators of subsets of R.

Contents

Goldie's theorem states that the semiprime right Goldie rings are precisely those that have a semisimple Artinian right classical ring of quotients. The structure of this ring of quotients is then completely determined by the Artin–Wedderburn theorem.

In particular, Goldie's theorem applies to semiprime right Noetherian rings, since by definition right Noetherian rings have the ascending chain condition on all right ideals. This is sufficient to guarantee that a right-Noetherian ring is right Goldie. The converse does not hold: every right Ore domain is a right Goldie domain, and hence so is every commutative integral domain.

A consequence of Goldie's theorem, again due to Goldie, is that every semiprime principal right ideal ring is isomorphic to a finite direct sum of prime principal right ideal rings. Every prime principal right ideal ring is isomorphic to a matrix ring over a right Ore domain.

Sketch of the proof

This is a sketch of the characterization mentioned in the introduction. It may be found in ( Lam 1999 , p.324).

Related Research Articles

In mathematics, specifically in ring theory, the simple modules over a ring R are the modules over R that are non-zero and have no non-zero proper submodules. Equivalently, a module M is simple if and only if every cyclic submodule generated by a non-zero element of M equals M. Simple modules form building blocks for the modules of finite length, and they are analogous to the simple groups in group theory.

In mathematics, a Noetherian ring is a ring that satisfies the ascending chain condition on left and right ideals; if the chain condition is satisfied only for left ideals or for right ideals, then the ring is said left-Noetherian or right-Noetherian respectively. That is, every increasing sequence of left ideals has a largest element; that is, there exists an n such that:

Commutative ring Algebraic structure

In ring theory, a branch of abstract algebra, a commutative ring is a ring in which the multiplication operation is commutative. The study of commutative rings is called commutative algebra. Complementarily, noncommutative algebra is the study of noncommutative rings where multiplication is not required to be commutative.

In abstract algebra, more specifically ring theory, local rings are certain rings that are comparatively simple, and serve to describe what is called "local behaviour", in the sense of functions defined on varieties or manifolds, or of algebraic number fields examined at a particular place, or prime. Local algebra is the branch of commutative algebra that studies commutative local rings and their modules.

Commutative algebra Branch of algebra that studies commutative rings

Commutative algebra, first known as ideal theory, is the branch of algebra that studies commutative rings, their ideals, and modules over such rings. Both algebraic geometry and algebraic number theory build on commutative algebra. Prominent examples of commutative rings include polynomial rings; rings of algebraic integers, including the ordinary integers ; and p-adic integers.

Ring theory Branch of algebra

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

Ring theory is the branch of mathematics in which rings are studied: that is, structures supporting both an addition and a multiplication operation. This is a glossary of some terms of the subject.

In mathematics, specifically abstract algebra, an Artinian ring is a ring that satisfies the descending chain condition on ideals; that is, there is no infinite descending sequence of ideals. Artinian rings are named after Emil Artin, who first discovered that the descending chain condition for ideals simultaneously generalizes finite rings and rings that are finite-dimensional vector spaces over fields. The definition of Artinian rings may be restated by interchanging the descending chain condition with an equivalent notion: the minimum condition.

In mathematics, specifically abstract algebra, an Artinian module is a module that satisfies the descending chain condition on its poset of submodules. They are for modules what Artinian rings are for rings, and a ring is Artinian if and only if it is an Artinian module over itself. Both concepts are named for Emil Artin.

In mathematics, a semi-local ring is a ring for which R/J(R) is a semisimple ring, where J(R) is the Jacobson radical of R. (Mikhalev & 2002, C.7)

In mathematics, especially in the area of abstract algebra known as module theory, a semisimple module or completely reducible module is a type of module that can be understood easily from its parts. A ring that is a semisimple module over itself is known as an Artinian semisimple ring. Some important rings, such as group rings of finite groups over fields of characteristic zero, are semisimple rings. An Artinian ring is initially understood via its largest semisimple quotient. The structure of Artinian semisimple rings is well understood by the Artin–Wedderburn theorem, which exhibits these rings as finite direct products of matrix rings.

In mathematics, especially in the area of algebra known as ring theory, the Ore condition is a condition introduced by Øystein Ore, in connection with the question of extending beyond commutative rings the construction of a field of fractions, or more generally localization of a ring. The right Ore condition for a multiplicative subset S of a ring R is that for aR and sS, the intersection aSsR ≠ ∅. A (non-commutative) domain for which the set of non-zero elements satisfies the right Ore condition is called a right Ore domain. The left case is defined similarly.

In mathematics, a principal right (left) ideal ring is a ring R in which every right (left) ideal is of the form xR (Rx) for some element x of R. When this is satisfied for both left and right ideals, such as the case when R is a commutative ring, R can be called a principal ideal ring, or simply principal ring.

Semiprime ring

In ring theory, a branch of mathematics, semiprime ideals and semiprime rings are generalizations of prime ideals and prime rings. In commutative algebra, semiprime ideals are also called radical ideals and semiprime rings are the same as reduced rings.

In mathematics, a commutative ring R is catenary if for any pair of prime ideals

In abstract algebra, an associated prime of a module M over a ring R is a type of prime ideal of R that arises as an annihilator of a (prime) submodule of M. The set of associated primes is usually denoted by and sometimes called the assassin or assassinator of M.

Noncommutative ring Algebraic structure

In mathematics, more specifically abstract algebra and ring theory, a noncommutative ring is a ring whose multiplication is not required to be commutative; that is, there may exist a and b in R with a·bb·a. These include commutative rings as a subclass. Noncommutative algebra is the study of results applying to rings that are not required to be commutative. Many important results in the field of noncommutative algebra apply to commutative rings as special cases. Some authors use the term noncommutative ring to refer to a ring that is strictly noncommutative, that is, for which there do exist a and b in R with a·bb·a.

In abstract algebra, a uniserial moduleM is a module over a ring R, whose submodules are totally ordered by inclusion. This means simply that for any two submodules N1 and N2 of M, either or . A module is called a serial module if it is a direct sum of uniserial modules. A ring R is called a right uniserial ring if it is uniserial as a right module over itself, and likewise called a right serial ring if it is a right serial module over itself. Left uniserial and left serial rings are defined in an analogous way, and are in general distinct from their right counterparts.

In abstract algebra, a module is called a uniform module if the intersection of any two nonzero submodules is nonzero. This is equivalent to saying that every nonzero submodule of M is an essential submodule. A ring may be called a right (left) uniform ring if it is uniform as a right (left) module over itself.

References

  1. This may be deduced from a theorem of Mewborn and Winton, that if a ring satisfies the maximal condition on right annihilators then the right singular ideal is nilpotent. ( Lam 1999 , p.252)