Harmonious set

Last updated

In mathematics, a harmonious set is a subset of a locally compact abelian group on which every weak character may be uniformly approximated by strong characters. Equivalently, a suitably defined dual set is relatively dense in the Pontryagin dual of the group. This notion was introduced by Yves Meyer in 1970 and later turned out to play an important role in the mathematical theory of quasicrystals. Some related concepts are model sets, Meyer sets , and cut-and-project sets.

Mathematics Field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Yves Meyer French mathematician

Yves F. Meyer is a French mathematician. He is among the progenitors of wavelet theory, having proposed the Meyer wavelet. Meyer was awarded the Abel Prize in 2017.

Quasicrystal Chemical structure

A quasiperiodic crystal, or quasicrystal, is a structure that is ordered but not periodic. A quasicrystalline pattern can continuously fill all available space, but it lacks translational symmetry. While crystals, according to the classical crystallographic restriction theorem, can possess only two, three, four, and six-fold rotational symmetries, the Bragg diffraction pattern of quasicrystals shows sharp peaks with other symmetry orders, for instance five-fold.

Contents

Definition

Let Λ be a subset of a locally compact abelian group G and Λd be the subgroup of G generated by Λ, with discrete topology. A weak character is a restriction to Λ of an algebraic homomorphism from Λd into the circle group:

Circle group Lie group of complex numbers of unit modulus; topologically a circle

In mathematics, the circle group, denoted by T, is the multiplicative group of all complex numbers with absolute value 1, that is, the unit circle in the complex plane or simply the unit complex numbers

A strong character is a restriction to Λ of a continuous homomorphism from G to T, that is an element of the Pontryagin dual of G.

A set Λ is harmonious if every weak character may be approximated by strong characters uniformly on Λ. Thus for any ε > 0 and any weak character χ, there exists a strong character ξ such that

If the locally compact abelian group G is separable and metrizable (its topology may be defined by a translation-invariant metric) then harmonious sets admit another, related, description. Given a subset Λ of G and a positive ε, let Mε be the subset of the Pontryagin dual of G consisting of all characters that are almost trivial on Λ:

Then Λ is harmonious if the sets Mε are relatively dense in the sense of Besicovitch: for every ε > 0 there exists a compact subset Kε of the Pontryagin dual such that

Properties

The next two properties show that the notion of a harmonious set is nontrivial only when the ambient group is neither compact nor discrete.

Discrete group discrete subgroup of a topological group G is a subgroup H such that there is an open cover of H in which every open subset contains exactly one element of H; in other words, the subspace topology of H in G is the discrete topology

In mathematics, a discrete subgroup of a topological group G is a subgroup H such that there is an open cover of G in which every open subset contains exactly one element of H; in other words, the subspace topology of H in G is the discrete topology. For example, the integers, Z, form a discrete subgroup of the reals, R, but the rational numbers, Q, do not. A discrete group is a topological group G equipped with the discrete topology.

Examples

Interesting examples of multiplicatively closed harmonious sets of real numbers arise in the theory of diophantine approximation.

See also

Related Research Articles

Lie group Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group that is also a differentiable manifold, with the property that the group operations are smooth. Lie groups are named after Norwegian mathematician Sophus Lie, who laid the foundations of the theory of continuous transformation groups.

In mathematics, profinite groups are topological groups that are in a certain sense assembled from finite groups. They share many properties with their finite quotients: for example, both Lagrange's theorem and the Sylow theorems generalise well to profinite groups.

Topological group Group that is a topological space with continuous group action

In mathematics, a topological group is a group G together with a topology on G such that the group's binary operation and the group's inverse function are continuous functions with respect to the topology. A topological group is a mathematical object with both an algebraic structure and a topological structure. Thus, one may perform algebraic operations, because of the group structure, and one may talk about continuous functions, because of the topology.

In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space.

In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion.

Unitary group A group of unitary matrices

In mathematics, the unitary group of degree n, denoted U(n), is the group of n × n unitary matrices, with the group operation of matrix multiplication. The unitary group is a subgroup of the general linear group GL(n, C). Hyperorthogonal group is an archaic name for the unitary group, especially over finite fields. For the group of unitary matrices with determinant 1, see Special unitary group.

Pontryagin duality theorem

In mathematics, specifically in harmonic analysis and the theory of topological groups, Pontryagin duality explains the general properties of the Fourier transform on locally compact abelian groups, such as , the circle, or finite cyclic groups. The Pontryagin duality theorem itself states that locally compact abelian groups identify naturally with their bidual.

In mathematics, an amenable group is a locally compact topological group G carrying a kind of averaging operation on bounded functions that is invariant under translation by group elements. The original definition, in terms of a finitely additive invariant measure on subsets of G, was introduced by John von Neumann in 1929 under the German name "messbar" in response to the Banach–Tarski paradox. In 1949 Mahlon M. Day introduced the English translation "amenable", apparently as a pun on "mean".

Compact group

In mathematics, a compact (topological) group is a topological group whose topology is compact. Compact groups are a natural generalization of finite groups with the discrete topology and have properties that carry over in significant fashion. Compact groups have a well-understood theory, in relation to group actions and representation theory.

In mathematics, the spectrum of a C*-algebra or dual of a C*-algebraA, denoted Â, is the set of unitary equivalence classes of irreducible *-representations of A. A *-representation π of A on a Hilbert space H is irreducible if, and only if, there is no closed subspace K different from H and {0} which is invariant under all operators π(x) with xA. We implicitly assume that irreducible representation means non-null irreducible representation, thus excluding trivial representations on one-dimensional spaces. As explained below, the spectrum  is also naturally a topological space; this is similar to the notion of the spectrum of a ring.

In mathematics, a locally compact topological group G has property (T) if the trivial representation is an isolated point in its unitary dual equipped with the Fell topology. Informally, this means that if G acts unitarily on a Hilbert space and has "almost invariant vectors", then it has a nonzero invariant vector. The formal definition, introduced by David Kazhdan (1967), gives this a precise, quantitative meaning.

In mathematics, a locally compact group is a topological group G for which the underlying topology is locally compact and Hausdorff. Locally compact groups are important because many examples of groups that arise throughout mathematics are locally compact and such groups have a natural measure called the Haar measure. This allows one to define integrals of Borel measurable functions on G so that standard analysis notions such as the Fourier transform and spaces can be generalized.

In mathematics, Tannaka–Krein duality theory concerns the interaction of a compact topological group and its category of linear representations. It is a natural extension of Pontryagin duality, between compact and discrete commutative topological groups, to groups that are compact but noncommutative. The theory is named for two men, the Soviet mathematician Mark Grigorievich Krein, and the Japanese Tadao Tannaka. In contrast to the case of commutative groups considered by Lev Pontryagin, the notion dual to a noncommutative compact group is not a group, but a category of representations Π(G) with some additional structure, formed by the finite-dimensional representations of G.

In mathematics, and more specifically in the theory of von Neumann algebras, a crossed product is a basic method of constructing a new von Neumann algebra from a von Neumann algebra acted on by a group. It is related to the semidirect product construction for groups.

Prüfer group

In mathematics, specifically in group theory, the Prüfer p-group or the p-quasicyclic group or p-group, Z(p), for a prime number p is the unique p-group in which every element has p different p-th roots.

In mathematics, the Langlands classification is a description of the irreducible representations of a reductive Lie group G, suggested by Robert Langlands (1973). There are two slightly different versions of the Langlands classification. One of these describes the irreducible admissible (g,K)-modules, for g a Lie algebra of a reductive Lie group G, with maximal compact subgroup K, in terms of tempered representations of smaller groups. The tempered representations were in turn classified by Anthony Knapp and Gregg Zuckerman. The other version of the Langlands classification divides the irreducible representations into L-packets, and classifies the L-packets in terms of certain homomorphisms of the Weil group of R or C into the Langlands dual group.

In mathematics, noncommutative harmonic analysis is the field in which results from Fourier analysis are extended to topological groups that are not commutative. Since locally compact abelian groups have a well-understood theory, Pontryagin duality, which includes the basic structures of Fourier series and Fourier transforms, the major business of non-commutative harmonic analysis is usually taken to be the extension of the theory to all groups G that are locally compact. The case of compact groups is understood, qualitatively and after the Peter–Weyl theorem from the 1920s, as being generally analogous to that of finite groups and their character theory.

In mathematics, a Meyer set or almost lattice is a set relatively dense X of points in the Euclidean plane or a higher-dimensional Euclidean space such that its Minkowski difference with itself is uniformly discrete. Meyer sets have several equivalent characterizations; they are named after Yves Meyer, who introduced and studied them in the context of diophantine approximation. Nowadays Meyer sets are best known as mathematical model for quasicrystals. However, Meyer's work precedes the discovery of quasicrystals by more than a decade and was entirely motivated by number theoretic questions.

References