Hosford yield criterion

Last updated

The Hosford yield criterion is a function that is used to determine whether a material has undergone plastic yielding under the action of stress.

Contents

Hosford yield criterion for isotropic plasticity

The plane stress, isotropic, Hosford yield surface for three values of n Hosford plane stress.png
The plane stress, isotropic, Hosford yield surface for three values of n

The Hosford yield criterion for isotropic materials [1] is a generalization of the von Mises yield criterion. It has the form

The von Mises yield criterion suggests that yielding of a ductile material begins when the second deviatoric stress invariant reaches a critical value. It is part of plasticity theory that applies best to ductile materials, such as some metals. Prior to yield, material response can be assumed to be of a nonlinear elastic, viscoelastic, or linear elastic behavior.

where , i=1,2,3 are the principal stresses, is a material-dependent exponent and is the yield stress in uniaxial tension/compression.

Alternatively, the yield criterion may be written as

This expression has the form of an Lp norm which is defined as

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz. Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, finance, engineering, and other disciplines.

When , the we get the L norm,

. Comparing this with the Hosford criterion

indicates that if n = ∞, we have

This is identical to the Tresca yield criterion.

Therefore, when n = 1 or n goes to infinity the Hosford criterion reduces to the Tresca yield criterion. When n = 2 the Hosford criterion reduces to the von Mises yield criterion.

Note that the exponent n does not need to be an integer.

Hosford yield criterion for plane stress

For the practically important situation of plane stress, the Hosford yield criterion takes the form

A plot of the yield locus in plane stress for various values of the exponent is shown in the adjacent figure.

Logan-Hosford yield criterion for anisotropic plasticity

The plane stress, anisotropic, Hosford yield surface for four values of n and R=2.0 Hosford aniso plane stress.png
The plane stress, anisotropic, Hosford yield surface for four values of n and R=2.0

The Logan-Hosford yield criterion for anisotropic plasticity [2] [3] is similar to Hill's generalized yield criterion and has the form

where F,G,H are constants, are the principal stresses, and the exponent n depends on the type of crystal (bcc, fcc, hcp, etc.) and has a value much greater than 2. [4] Accepted values of are 6 for bcc materials and 8 for fcc materials.

Though the form is similar to Hill's generalized yield criterion, the exponent n is independent of the R-value unlike the Hill's criterion.

Logan-Hosford criterion in plane stress

Under plane stress conditions, the Logan-Hosford criterion can be expressed as

where is the R-value and is the yield stress in uniaxial tension/compression. For a derivation of this relation see Hill's yield criteria for plane stress. A plot of the yield locus for the anisotropic Hosford criterion is shown in the adjacent figure. For values of that are less than 2, the yield locus exhibits corners and such values are not recommended. [4]

Related Research Articles

In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number . Similarly, an improper integral of a function, , is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if

Poisson's ratio, denoted by the Greek letter 'nu', , and named after Siméon Poisson, is the negative of the ratio of (signed) transverse strain to (signed) axial strain. For small values of these changes, is the amount of transversal expansion divided by the amount of axial compression.

Mohr–Coulomb theory is a mathematical model describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials somehow follow this rule in at least a portion of their shear failure envelope. Generally the theory applies to materials for which the compressive strength far exceeds the tensile strength.

Mohrs circle

Mohr's circle, named after Christian Otto Mohr, is a two-dimensional graphical representation of the transformation law for the Cauchy stress tensor.

A neo-Hookean solid is a hyperelastic material model, similar to Hooke's law, that can be used for predicting the nonlinear stress-strain behavior of materials undergoing large deformations. The model was proposed by Ronald Rivlin in 1948. In contrast to linear elastic materials, the stress-strain curve of a neo-Hookean material is not linear. Instead, the relationship between applied stress and strain is initially linear, but at a certain point the stress-strain curve will plateau. The neo-Hookean model does not account for the dissipative release of energy as heat while straining the material and perfect elasticity is assumed at all stages of deformation.

The yield point is the point on a stress–strain curve that indicates the limit of elastic behavior and the beginning of plastic behavior. Yield strength or yield stress is the material property defined as the stress at which a material begins to deform plastically whereas yield point is the point where nonlinear deformation begins. Prior to the yield point the material will deform elastically and will return to its original shape when the applied stress is removed. Once the yield point is passed, some fraction of the deformation will be permanent and non-reversible.

The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by Cherepanov and in 1968 by Jim Rice independently, who showed that an energetic contour path integral was independent of the path around a crack.

Yield surface

A yield surface is a five-dimensional surface in the six-dimensional space of stresses. The yield surface is usually convex and the state of stress of inside the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its yield point and the material is said to have become plastic. Further deformation of the material causes the stress state to remain on the yield surface, even though the shape and size of the surface may change as the plastic deformation evolves. This is because stress states that lie outside the yield surface are non-permissible in rate-independent plasticity, though not in some models of viscoplasticity.

The T-failure criterion is a set of material failure criteria that can be used to predict both brittle and ductile failure.

Rodney Hill has developed several yield criteria for anisotropic plastic deformations. The earliest version was a straightforward extension of the von Mises yield criterion and had a quadratic form. This model was later generalized by allowing for an exponent m. Variations of these criteria are in wide use for metals, polymers, and certain composites.

Viscoplasticity

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.

Drucker–Prager yield criterion

The Drucker–Prager yield criterion is a pressure-dependent model for determining whether a material has failed or undergone plastic yielding. The criterion was introduced to deal with the plastic deformation of soils. It and its many variants have been applied to rock, concrete, polymers, foams, and other pressure-dependent materials.

Bresler Pister yield criterion

The Bresler-Pister yield criterion is a function that was originally devised to predict the strength of concrete under multiaxial stress states. This yield criterion is an extension of the Drucker-Prager yield criterion and can be expressed on terms of the stress invariants as

Willam-Warnke yield criterion

The Willam-Warnke yield criterion is a function that is used to predict when failure will occur in concrete and other cohesive-frictional materials such as rock, soil, and ceramics. This yield criterion has the functional form

Failure theory is the science of predicting the conditions under which solid materials fail under the action of external loads. The failure of a material is usually classified into brittle failure (fracture) or ductile failure (yield). Depending on the conditions most materials can fail in a brittle or ductile manner or both. However, for most practical situations, a material may be classified as either brittle or ductile. Though failure theory has been in development for over 200 years, its level of acceptability is yet to reach that of continuum mechanics.

The Tsai–Wu failure criterion is a phenomenological material failure theory which is widely used for anisotropic composite materials which have different strengths in tension and compression. The Tsai-Wu criterion predicts failure when the failure index in a laminate reaches 1. This failure criterion is a specialization of the general quadratic failure criterion proposed by Gol'denblat and Kopnov and can be expressed in the form

Sandwich theory

Sandwich theory describes the behaviour of a beam, plate, or shell which consists of three layers—two facesheets and one core. The most commonly used sandwich theory is linear and is an extension of first order beam theory. Linear sandwich theory is of importance for the design and analysis of sandwich panels, which are of use in building construction, vehicle construction, airplane construction and refrigeration engineering.

The Hoek–Brown failure criterion is an empirical stress surface that is used in rock mechanics to predict the failure of rock. The original version of the Hoek–Brown criterion was developed by Evert Hoek and E. T. Brown in 1980 for the design of underground excavations. In 1988, the criterion was extended for applicability to slope stability and surface excavation problems. An update of the criterion was presented in 2002 that included improvements in the correlation between the model parameters and the geological strength index (GSI).

Micro-mechanics of failure

The theory of micro-mechanics of failure aims to explain the failure of continuous fiber reinforced composites by micro-scale analysis of stresses within each constituent material, and of the stresses at the interfaces between those constituents, calculated from the macro stresses at the ply level.

References

  1. Hosford, W. F. (1972). A generalized isotropic yield criterion, Journal of Applied Mechanics, v. 39, n. 2, pp. 607-609.
  2. Hosford, W. F., (1979), On yield loci of anisotropic cubic metals, Proc. 7th North American Metalworking Conf., SME, Dearborn, MI.
  3. Logan, R. W. and Hosford, W. F., (1980), Upper-Bound Anisotropic Yield Locus Calculations Assuming< 111>-Pencil Glide, International Journal of Mechanical Sciences, v. 22, n. 7, pp. 419-430.
  4. 1 2 Hosford, W. F., (2005), Mechanical Behavior of Materials, p. 92, Cambridge University Press.

See also