Indeterminacy in computation

Last updated

Indeterminacy is a property of formal systems that evolve in time (often conceptualized as a computation), in which complete information about the internal state of the system at some point in time admits multiple future trajectories.

In simpler terms, if such a system is returned to the same initial condition—or two identical copies of the system are started at the same time—they won't with certainty produce the same behaviour, as some element of chance is able to enter the system from outside its formal specification.

In some cases the indeterminacy arises from the laws of physics, in other cases it leaks in from the abstract model, and sometimes the model includes an explicit source of indeterminacy, as with deliberately randomized algorithms, for the benefits that this provides.

Disambiguation

Indeterminacy in computation may refer to:

In concurrency:

Related Research Articles

In computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem.

In theoretical computer science, a nondeterministic Turing machine (NTM) is a theoretical model of computation whose governing rules specify more than one possible action when in some given situations. That is, an NTM's next state is not completely determined by its action and the current symbol it sees, unlike a deterministic Turing machine.

Concurrent means happening at the same time. Concurrency, concurrent, or concurrence may refer to:

Computer science is the study of the theoretical foundations of information and computation and their implementation and application in computer systems. One well known subject classification system for computer science is the ACM Computing Classification System devised by the Association for Computing Machinery.

In theoretical computer science, a probabilistic Turing machine is a non-deterministic Turing machine that chooses between the available transitions at each point according to some probability distribution. As a consequence, a probabilistic Turing machine can—unlike a deterministic Turing Machine—have stochastic results; that is, on a given input and instruction state machine, it may have different run times, or it may not halt at all; furthermore, it may accept an input in one execution and reject the same input in another execution.

Theoretical computer science is a subfield of computer science and mathematics that focuses on the abstract and mathematical foundations of computation.

Nondeterminism or nondeterministic may refer to:

<span class="mw-page-title-main">Complexity class</span> Set of problems in computational complexity theory

In computational complexity theory, a complexity class is a set of computational problems "of related resource-based complexity". The two most commonly analyzed resources are time and memory.

In computer science and computer programming, a nondeterministic algorithm is an algorithm that, even for the same input, can exhibit different behaviors on different runs, as opposed to a deterministic algorithm.

<span class="mw-page-title-main">Concurrency (computer science)</span> Ability to execute a task in a non-serial manner

In computer science, concurrency is the ability of different parts or units of a program, algorithm, or problem to be executed out-of-order or in partial order, without affecting the outcome. This allows for parallel execution of the concurrent units, which can significantly improve overall speed of the execution in multi-processor and multi-core systems. In more technical terms, concurrency refers to the decomposability of a program, algorithm, or problem into order-independent or partially-ordered components or units of computation.

The actor model in computer science is a mathematical model of concurrent computation that treats an actor as the basic building block of concurrent computation. In response to a message it receives, an actor can: make local decisions, create more actors, send more messages, and determine how to respond to the next message received. Actors may modify their own private state, but can only affect each other indirectly through messaging.

In computer science, and more specifically in computability theory and computational complexity theory, a model of computation is a model which describes how an output of a mathematical function is computed given an input. A model describes how units of computations, memories, and communications are organized. The computational complexity of an algorithm can be measured given a model of computation. Using a model allows studying the performance of algorithms independently of the variations that are specific to particular implementations and specific technology.

In computer science, the Actor model, first published in 1973, is a mathematical model of concurrent computation.

In computer science, unbounded nondeterminism or unbounded indeterminacy is a property of concurrency by which the amount of delay in servicing a request can become unbounded as a result of arbitration of contention for shared resources while still guaranteeing that the request will eventually be serviced. Unbounded nondeterminism became an important issue in the development of the denotational semantics of concurrency, and later became part of research into the theoretical concept of hypercomputation.

Indeterminacy in concurrent computation is concerned with the effects of indeterminacy in concurrent computation. Computation is an area in which indeterminacy is becoming increasingly important because of the massive increase in concurrency due to networking and the advent of many-core computer architectures. These computer systems make use of arbiters which gives rise to indeterminacy.

The following outline is provided as an overview of and topical guide to computer programming:

Quantum complexity theory is the subfield of computational complexity theory that deals with complexity classes defined using quantum computers, a computational model based on quantum mechanics. It studies the hardness of computational problems in relation to these complexity classes, as well as the relationship between quantum complexity classes and classical complexity classes.

Random-access Turing machines (RATMs) represent a pivotal computational model in theoretical computer science, especially critical in the study of tractability within big data computing scenarios. Diverging from the sequential memory access limitations of conventional Turing machines, RATMs introduce the capability for random access to memory positions. This advancement is not merely a technical enhancement but a fundamental shift in computational paradigms, aligning more closely with the memory access patterns of modern computing systems. The inherent ability of RATMs to access any memory cell in a constant amount of time significantly bolsters computational efficiency, particularly for problem sets where data size and access speed are critical factors. Furthermore, the conceptual evolution of RATMs from traditional Turing machines marks a significant leap in the understanding of computational processes, providing a more realistic framework for analyzing algorithms that handle the complexities of large-scale data. This transition from a sequential to a random-access paradigm not only mirrors the advancements in real-world computing systems but also underscores the growing relevance of RATMs in addressing the challenges posed by big data applications.