Inertial platform

Last updated

An inertial platform, also known as a gyroscopic platform or stabilized platform, is a system using gyroscopes to maintain a platform in a fixed orientation in space despite the movement of the vehicle that it is attached to. These can then be used to stabilize gunsights in tanks, anti-aircraft artillery on ships, and as the basis for older mechanically based inertial navigation systems. See Inertial measurement unit

Related Research Articles

Gyroscope device for measuring or maintaining orientation and direction

A gyroscope is a device used for measuring or maintaining orientation and angular velocity. It is a spinning wheel or disc in which the axis of rotation is free to assume any orientation by itself. When rotating, the orientation of this axis is unaffected by tilting or rotation of the mounting, according to the conservation of angular momentum.

Ring laser gyroscope laser interferometer designed to measure angular velocity

A ring laser gyroscope (RLG) consists of a ring laser having two independent counter-propagating resonant modes over the same path; the difference in the frequencies is used to detect rotation. It operates on the principle of the Sagnac effect which shifts the nulls of the internal standing wave pattern in response to angular rotation. Interference between the counter-propagating beams, observed externally, results in motion of the standing wave pattern, and thus indicates rotation.

Gimbal pivoted support system

A gimbal is a pivoted support that allows the rotation of an object about a single axis. A set of three gimbals, one mounted on the other with orthogonal pivot axes, may be used to allow an object mounted on the innermost gimbal to remain independent of the rotation of its support. For example, on a ship, the gyroscopes, shipboard compasses, stoves, and even drink holders typically use gimbals to keep them upright with respect to the horizon despite the ship's pitching and rolling.

Missile guidance variety of methods of guiding a missile

Missile guidance refers to a variety of methods of guiding a missile or a guided bomb to its intended target. The missile's target accuracy is a critical factor for its effectiveness. Guidance systems improve missile accuracy by improving its Probability of Guidance (Pg).

A vibrating structure gyroscope, defined by the IEEE as a Coriolis vibratory gyroscope (CVG), is a gyroscope that uses a vibrating structure to determine the rate of rotation. A vibrating structure gyroscope functions much like the halteres of flies.

Schuler tuning is a design principle for inertial navigation systems that accounts for the curvature of the Earth. An inertial navigation system, used in submarines, ships, aircraft, and other vehicles to keep track of position, determines directions with respect to three axes pointing "north", "east", and "down". To detect the vehicle's orientation, the system contains an "inertial platform" mounted on gimbals, with gyroscopes that detect motion connected to a servo system to keep it pointing in a fixed orientation in space. However, the directions "north", "east" and "down" change as the vehicle moves on the curved surface of the Earth. Schuler tuning describes the conditions necessary for an inertial navigation system to keep the inertial platform always pointing "north", "east" and "down", so it gives correct directions on the near-spherical Earth. It is widely used in electronic control systems.

Apollo PGNCS Apollo spacecraft guidance system

The Apollo primary guidance, navigation, and control system (PGNCS) was a self-contained inertial guidance system that allowed Apollo spacecraft to carry out their missions when communications with Earth were interrupted, either as expected, when the spacecraft were behind the Moon, or in case of a communications failure. The Apollo command module (CM) and lunar module (LM), were each equipped with a version of PGNCS. PGNCS, and specifically its computer, were also the command center for all system inputs from the LM, including the alignment optical telescope, the radar system, the manual translation and rotation device inputs by the astronauts as well as other inputs from the LM systems.

An attitude and heading reference system (AHRS) consists of sensors on three axes that provide attitude information for aircraft, including roll, pitch and yaw. These are sometimes referred to as MARG sensors and consist of either solid-state or microelectromechanical systems (MEMS) gyroscopes, accelerometers and magnetometers. They are designed to replace traditional mechanical gyroscopic flight instruments.

Fibre-optic gyroscope uses fibre optics and light interference

A fibre-optic gyroscope (FOG) senses changes in orientation using the Sagnac effect, thus performing the function of a mechanical gyroscope. However its principle of operation is instead based on the interference of light which has passed through a coil of optical fibre, which can be as long as 5 kilometres (3 mi).

Stabilizer (ship) Ship component meant to reduce a ships roll

Ship stabilizers are fins or rotors mounted beneath the waterline and emerging laterally from the hull to reduce a ship's roll due to wind or waves. Active fins are controlled by a gyroscopic control system. When the gyroscope senses the ship roll, it changes the fins' angle of attack to exert force to counteract the roll. Fixed fins and bilge keels do not move; they reduce roll by hydrodynamic drag exerted when the ship rolls. Stabilizers are mostly used on ocean-going ships.

A Rate integrating gyroscope is a rate gyro with a built in integrator. It is usually a component of an Inertial Measurement Unit or a stabilization system.

Inertial reference unit Avionics sensor

An inertial reference unit (IRU) is a type of inertial sensor which uses gyroscopes and accelerometers to determine a moving aircraft’s or spacecraft’s change in rotational attitude and translational position over a period of time. In other words, an IRU allows a device, whether airborne or submarine, to travel from one point to another without reference to external information. They mainly have application in guided missiles.

M981 FISTV Type of Fire Support Team Vehicle

The M981 FISTV is a United States Army armored vehicle designed to house an artillery observer team in mechanized units. It was based on the M901 Improved TOW Vehicle (ITV) - itself based on the ubiquitous M113 Armored Personnel Carrier chassis - and outwardly closely resembles it, so as to make it less conspicuous on the battlefield.

Advanced Inertial Reference Sphere highly accurate inertial guidance system

The Advanced Inertial Reference Sphere (AIRS) is a highly accurate inertial guidance system designed for use in the LGM-118A Peacekeeper ICBM which was intended for precision nuclear strikes against Soviet missile silos.

A PIGA is a type of accelerometer that can measure acceleration and simultaneously integrates this acceleration against time to produce a speed measure as well. The PIGA's main use is in Inertial Navigation Systems (INS) for guidance of aircraft and most particularly for ballistic missile guidance. It is valued for its extremely high sensitivity and accuracy in conjunction with operation over a wide acceleration range. The PIGA is still considered the premier instrument for strategic grade missile guidance, though systems based on MEMS technology are attractive for lower performance requirements.

The Tamam Division of the Systems Missiles and Space Group of the Israel Aerospace Industries (IAI) is a manufacturing plant in the development and production of high performance Inertial and Electro-Optic (EO) products and systems and maritime drones.

Inertial navigation system navigation aid relying on systems contained within the vehicle to determine location

An inertial navigation system (INS) is a navigation device that uses a computer, motion sensors (accelerometers) and rotation sensors (gyroscopes) to continuously calculate by dead reckoning the position, the orientation, and the velocity of a moving object without the need for external references. Often the inertial sensors are supplemented by a barometric altimeter and occasionally by magnetic sensors (magnetometers) and/or speed measuring devices. INSs are used on mobile robots and on vehicles such as ships, aircraft, submarines, guided missiles, and spacecraft. Other terms used to refer to inertial navigation systems or closely related devices include inertial guidance system, inertial instrument, inertial measurement unit (IMU) and many other variations. Older INS systems generally used an inertial platform as their mounting point to the vehicle and the terms are sometimes considered synonymous.

LN-3 inertial navigation system

The LN-3 inertial navigation system is an inertial navigation system (INS) that was developed in the 1960s by Litton Industries. It equipped the Lockheed F-104 Starfighter versions used as strike aircraft in European forces. An inertial navigation system is a system which continually determines the position of a vehicle from measurements made entirely within the vehicle using sensitive instruments. These instruments are accelerometers which detect and measure vehicle accelerations, and gyroscopes which act to hold the accelerometers in proper orientation.

Attitude control is the process of controlling the orientation of an aerospace vehicle with respect to an inertial frame of reference or another entity such as the celestial sphere, certain fields, and nearby objects, etc.

Inertial measurement unit electronic device to measure a crafts velocity and orientation

An inertial measurement unit (IMU) is an electronic device that measures and reports a body's specific force, angular rate, and sometimes the orientation of the body, using a combination of accelerometers, gyroscopes, and sometimes magnetometers. IMUs are typically used to maneuver aircraft, including unmanned aerial vehicles (UAVs), among many others, and spacecraft, including satellites and landers. Recent developments allow for the production of IMU-enabled GPS devices. An IMU allows a GPS receiver to work when GPS-signals are unavailable, such as in tunnels, inside buildings, or when electronic interference is present. A wireless IMU is known as a WIMU.

References