Information-based complexity

Last updated

Information-based complexity (IBC) studies optimal algorithms and computational complexity for the continuous problems that arise in physical science, economics, engineering, and mathematical finance. IBC has studied such continuous problems as path integration, partial differential equations, systems of ordinary differential equations, nonlinear equations, integral equations, fixed points, and very-high-dimensional integration. All these problems involve functions (typically multivariate) of a real or complex variable. Since one can never obtain a closed-form solution to the problems of interest one has to settle for a numerical solution. Since a function of a real or complex variable cannot be entered into a digital computer, the solution of continuous problems involves partial information. To give a simple illustration, in the numerical approximation of an integral, only samples of the integrand at a finite number of points are available. In the numerical solution of partial differential equations the functions specifying the boundary conditions and the coefficients of the differential operator can only be sampled. Furthermore, this partial information can be expensive to obtain. Finally the information is often contaminated by noise.

Contents

The goal of information-based complexity is to create a theory of computational complexity and optimal algorithms for problems with partial, contaminated and priced information, and to apply the results to answering questions in various disciplines. Examples of such disciplines include physics, economics, mathematical finance, computer vision, control theory, geophysics, medical imaging, weather forecasting and climate prediction, and statistics. The theory is developed over abstract spaces, typically Hilbert or Banach spaces, while the applications are usually for multivariate problems.

Since the information is partial and contaminated, only approximate solutions can be obtained. IBC studies computational complexity and optimal algorithms for approximate solutions in various settings. Since the worst case setting often leads to negative results such as unsolvability and intractability, settings with weaker assurances such as average, probabilistic and randomized are also studied. A fairly new area of IBC research is continuous quantum computing.

Overview

We illustrate some important concepts with a very simple example, the computation of

For most integrands we can't use the fundamental theorem of calculus to compute the integral analytically; we have to approximate it numerically. We compute the values of at n points

The n numbers are the partial information about the true integrand We combine these n numbers by a combinatory algorithm to compute an approximation to the integral. See the monograph Complexity and Information for particulars.

Because we have only partial information we can use an adversary argument to tell us how large n has to be to compute an -approximation. Because of these information-based arguments we can often obtain tight bounds on the complexity of continuous problems. For discrete problems such as integer factorization or the travelling salesman problem we have to settle for conjectures about the complexity hierarchy. The reason is that the input is a number or a vector of numbers and can thus be entered into the computer. Thus there is typically no adversary argument at the information level and the complexity of a discrete problem is rarely known.

The univariate integration problem was for illustration only. Significant for many applications is multivariate integration. The number of variables is in the hundreds or thousands. The number of variables may even be infinite; we then speak of path integration. The reason that integrals are important in many disciplines is that they occur when we want to know the expected behavior of a continuous process. See for example, the application to mathematical finance below.

Assume we want to compute an integral in d dimensions (dimensions and variables are used interchangeably) and that we want to guarantee an error at most for any integrand in some class. The computational complexity of the problem is known to be of order (Here we are counting the number of function evaluations and the number of arithmetic operations so this is the time complexity.) This would take many years for even modest values of The exponential dependence on d is called the curse of dimensionality . We say the problem is intractable.

We stated the curse of dimensionality for integration. But exponential dependence on d occurs for almost every continuous problem that has been investigated. How can we try to vanquish the curse? There are two possibilities:

An example: mathematical finance

Very high dimensional integrals are common in finance. For example, computing expected cash flows for a collateralized mortgage obligation (CMO) requires the calculation of a number of dimensional integrals, the being the number of months in years. Recall that if a worst case assurance is required the time is of order time units. Even if the error is not small, say this is time units. People in finance have long been using the Monte Carlo method (MC), an instance of a randomized algorithm. Then in 1994 a research group at Columbia University (Papageorgiou, Paskov, Traub, Woźniakowski) discovered that the quasi-Monte Carlo (QMC) method using low discrepancy sequences beat MC by one to three orders of magnitude. The results were reported to a number of Wall Street finance to considerable initial skepticism. The results were first published by Paskov and Traub, Faster Valuation of Financial Derivatives, Journal of Portfolio Management 22, 113-120. Today QMC is widely used in the financial sector to value financial derivatives.

These results are empirical; where does computational complexity come in? QMC is not a panacea for all high dimensional integrals. What is special about financial derivatives? Here's a possible explanation. The dimensions in the CMO represent monthly future times. Due to the discounted value of money variables representing times for in the future are less important than the variables representing nearby times. Thus the integrals are non-isotropic. Sloan and Woźniakowski introduced the very powerful idea of weighted spaces, which is a formalization of the above observation. They were able to show that with this additional domain knowledge high dimensional integrals satisfying certain conditions were tractable even in the worst case! In contrast the Monte Carlo method gives only a stochastic assurance. See Sloan and Woźniakowski When are Quasi-Monte Carlo Algorithms Efficient for High Dimensional Integration? J. Complexity 14, 1-33, 1998. For which classes of integrals is QMC superior to MC? This continues to be a major research problem.

Brief history

Precursors to IBC may be found in the 1950s by Kiefer, Sard, and Nikolskij. In 1959 Traub had the key insight that the optimal algorithm and the computational complexity of solving a continuous problem depended on the available information. He applied this insight to the solution of nonlinear equations, which started the area of optimal iteration theory. This research was published in the 1964 monograph Iterative Methods for the Solution of Equations.

The general setting for information-based complexity was formulated by Traub and Woźniakowski in 1980 in A General Theory of Optimal Algorithms. For a list of more recent monographs and pointers to the extensive literature see To Learn More below.

Prizes

There are a number of prizes for IBC research.

Related Research Articles

Numerical integration Family of algorithms for finding the definite integral of a function

In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations. This article focuses on calculation of definite integrals.

An inverse problem in science is the process of calculating from a set of observations the causal factors that produced them: for example, calculating an image in X-ray computed tomography, source reconstruction in acoustics, or calculating the density of the Earth from measurements of its gravity field. It is called an inverse problem because it starts with the effects and then calculates the causes. It is the inverse of a forward problem, which starts with the causes and then calculates the effects.

In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time. The field of approximation algorithms, therefore, tries to understand how closely it is possible to approximate optimal solutions to such problems in polynomial time. In an overwhelming majority of the cases, the guarantee of such algorithms is a multiplicative one expressed as an approximation ratio or approximation factor i.e., the optimal solution is always guaranteed to be within a (predetermined) multiplicative factor of the returned solution. However, there are also many approximation algorithms that provide an additive guarantee on the quality of the returned solution. A notable example of an approximation algorithm that provides both is the classic approximation algorithm of Lenstra, Shmoys and Tardos for scheduling on unrelated parallel machines.

Bounding sphere Sphere that contains a set of objects

In mathematics, given a non-empty set of objects of finite extension in -dimensional space, for example a set of points, a bounding sphere, enclosing sphere or enclosing ball for that set is an -dimensional solid sphere containing all of these objects.

MAX-3SAT is a problem in the computational complexity subfield of computer science. It generalises the Boolean satisfiability problem (SAT) which is a decision problem considered in complexity theory. It is defined as:

In computational complexity theory, the maximum satisfiability problem (MAX-SAT) is the problem of determining the maximum number of clauses, of a given Boolean formula in conjunctive normal form, that can be made true by an assignment of truth values to the variables of the formula. It is a generalization of the Boolean satisfiability problem, which asks whether there exists a truth assignment that makes all clauses true.

Computational electromagnetics Branch of physics

Computational electromagnetics (CEM), computational electrodynamics or electromagnetic modeling is the process of modeling the interaction of electromagnetic fields with physical objects and the environment.

Kadomtsev–Petviashvili equation

In mathematics and physics, the Kadomtsev–Petviashvili equation is a partial differential equation to describe nonlinear wave motion. Named after Boris Borisovich Kadomtsev and Vladimir Iosifovich Petviashvili, the KP equation is usually written as:

Ellipsoid method

In mathematical optimization, the ellipsoid method is an iterative method for minimizing convex functions. When specialized to solving feasible linear optimization problems with rational data, the ellipsoid method is an algorithm which finds an optimal solution in a number of steps that is polynomial in the input size.

Joseph Frederick Traub was an American computer scientist. He was the Edwin Howard Armstrong Professor of Computer Science at Columbia University and External Professor at the Santa Fe Institute. He held positions at Bell Laboratories, University of Washington, Carnegie Mellon, and Columbia, as well as sabbatical positions at Stanford, Berkeley, Princeton, California Institute of Technology, and Technical University, Munich.

In computational complexity theory, a PTAS reduction is an approximation-preserving reduction that is often used to perform reductions between solutions to optimization problems. It preserves the property that a problem has a polynomial time approximation scheme (PTAS) and is used to define completeness for certain classes of optimization problems such as APX. Notationally, if there is a PTAS reduction from a problem A to a problem B, we write .

High-dimensional integrals in hundreds or thousands of variables occur commonly in finance. These integrals have to be computed numerically to within a threshold . If the integral is of dimension then in the worst case, where one has a guarantee of error at most , the computational complexity is typically of order . That is, the problem suffers the curse of dimensionality. In 1977 P. Boyle, University of Waterloo, proposed using Monte Carlo (MC) to evaluate options. Starting in early 1992, J. F. Traub, Columbia University, and a graduate student at the time, S. Paskov, used quasi-Monte Carlo (QMC) to price a Collateralized mortgage obligation with parameters specified by Goldman Sachs. Even though it was believed by the world's leading experts that QMC should not be used for high-dimensional integration, Paskov and Traub found that QMC beat MC by one to three orders of magnitude and also enjoyed other desirable attributes. Their results were first published in 1995. Today QMC is widely used in the financial sector to value financial derivatives; see list of books below.

Finite element method Numerical method for solving physical or engineering problems

The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential.

David Mount is a professor at the University of Maryland, College Park department of computer science whose research is in computational geometry.

The Petrov–Galerkin method is a mathematical method used to approximate solutions of partial differential equations which contain terms with odd order and where the test function and solution function belong to different function spaces. It can be viewed as an extension of Bubnov-Galerkin method where the bases of test functions and solution functions are the same. In an operator formulation of the differential equation, Petrov–Galerkin method can be viewed as applying a projection that is not necessarily orthogonal, in contrast to Bubnov-Galerkin method.

The convection–diffusion equation describes the flow of heat, particles, or other physical quantities in situations where there is both diffusion and convection or advection. For information about the equation, its derivation, and its conceptual importance and consequences, see the main article convection–diffusion equation. This article describes how to use a computer to calculate an approximate numerical solution of the discretized equation, in a time-dependent situation.

In mathematics, the walk-on-spheres method (WoS) is a numerical probabilistic algorithm, or Monte-Carlo method, used mainly in order to approximate the solutions of some specific boundary value problem for partial differential equations (PDEs). The WoS method was first introduced by Mervin E. Muller in 1956 to solve Laplace's equation, and was since then generalized to other problems.

In mathematical optimization, oracle complexity is a standard theoretical framework to study the computational requirements for solving classes of optimization problems. It is suitable for analyzing iterative algorithms which proceed by computing local information about the objective function at various points. The framework has been used to provide tight worst-case guarantees on the number of required iterations, for several important classes of optimization problems.

Probabilistic numerics is a scientific field at the intersection of statistics, machine learning and applied mathematics, where tasks in numerical analysis including finding numerical solutions for integration, linear algebra, optimisation and differential equations are seen as problems of statistical, probabilistic, or Bayesian inference.

ZFK equation, abbreviation for Zeldovich–Frank-Kamenetskii equation, is a reaction–diffusion equation that models premixed flame propagation. The equation is named after Yakov Zeldovich and David A. Frank-Kamenetskii who derived the equation in 1938. The equation is analogous to KPP equation except that is contains an exponential behaviour for the reaction term and it differs fundamentally from KPP equation with regards to the propagation velocity of the traveling wave. In non-dimensional form, the equation reads

References

Extensive bibliographies may be found in the monographs N (1988), TW (1980), TWW (1988) and TW (1998). The IBC website has a searchable data base of some 730 items.