C++ Standard Library |
---|
Containers |
C standard library |
In the C++ programming language, input/output library refers to a family of class templates and supporting functions in the C++ Standard Library that implement stream-based input/output capabilities. [1] [2] It is an object-oriented alternative to C's FILE-based streams from the C standard library. [3] [4]
Bjarne Stroustrup, the creator of C++, wrote the first version of the stream I/O library in 1984, as a type-safe and extensible alternative to C's I/O library. [5] The library has undergone a number of enhancements since this early version, including the introduction of manipulators to control formatting, and templatization to allow its use with character types other than char
.
Standardization in 1998 saw the library moved into the std
namespace, and the main header changed from <iostream.h>
to <iostream>
. It is this standardized version that is covered in the rest of the article.
Most of the classes in the library are actually very generalized class templates. Each template can operate on various character types, and even the operations themselves, such as how two characters are compared for equality, can be customized. However, the majority of code needs to do input and output operations using only one or two character types, thus most of the time the functionality is accessed through several typedefs, which specify names for commonly used combinations of template and character type.
For example, basic_fstream<CharT,Traits>
refers to the generic class template that implements input/output operations on file streams. It is usually used as fstream
which is an alias for basic_fstream<char,char_traits<char>>
, or, in other words, basic_fstream
working on characters of type char
with the default character operation set.
The classes in the library could be divided into roughly two categories: abstractions and implementations. Classes, that fall into abstractions category, provide an interface which is sufficient for working with any type of a stream. The code using such classes doesn't depend on the exact location the data is read from or is written to. For example, such code could write data to a file, a memory buffer or a web socket without a recompilation. The implementation classes inherit the abstraction classes and provide an implementation for concrete type of data source or sink. The library provides implementations only for file-based streams and memory buffer-based streams.
The classes in the library could also be divided into two groups by whether it implements low-level or high-level operations. The classes that deal with low-level stuff are called stream buffers. They operate on characters without providing any formatting functionality. These classes are very rarely used directly. The high-level classes are called streams and provide various formatting capabilities. They are built on top of stream buffers.
The following table lists and categorizes all classes provided by the input-output library.
Class | Explanation | Typedefs |
---|---|---|
Stream buffers (low level functionality) | ||
basic_streambuf | provides abstract low level input/output interface, that can be implemented for concrete data sources or sinks. Rarely used directly. |
|
basic_filebuf | implements low level input/output interface for file-based streams. Rarely used directly. |
|
basic_stringbuf | implements low level input/output interface for string-based streams. Rarely used directly. |
|
Support classes | ||
ios_base | manages formatting information and exception state | — |
basic_ios | manages a stream buffer |
|
Input streams buffers (high level functionality) | ||
basic_istream | wraps an abstract stream buffer and provides high level input interface, such as formatting capabilities. |
|
basic_ifstream | an input stream that wraps a file stream buffer. Provides functions to open or close a file in addition to those of generic input stream |
|
basic_istringstream | an input stream that wraps a string stream buffer. Provides functions to access the underlying string in addition to those of generic input stream |
|
Output streams buffers (high level functionality) | ||
basic_ostream | wraps an abstract stream buffer and provides high level output interface, such as formatting capabilities. |
|
basic_ofstream | an output stream that wraps a file stream buffer. Provides functions to open or close a file in addition to those of generic output stream |
|
basic_ostringstream | an output stream that wraps a string stream buffer. Provides functions to access the underlying string in addition to those of generic output stream |
|
Input/output streams buffers (high level functionality) | ||
basic_iostream | wraps an abstract stream buffer and provides high level input/output interface, such as formatting capabilities. |
|
basic_fstream | an input/output stream that wraps a file stream buffer. Provides functions to open or close a file in addition to those of generic input/output stream |
|
basic_stringstream | an input/output stream that wraps a string stream buffer. Provides functions to access the underlying string in addition to those of generic input/output stream |
|
The classes of the input/output library reside in several headers.
<ios>
contains the definitions of ios_base
and basic_ios
classes, that manage formatting information and the associated stream-buffer.<istream>
contains the definition of basic_istream
class template, which implements formatted input.<ostream>
contains the definition of basic_ostream
class template, which implements formatted output.<iostream>
contains the definition of basic_iostream
class template, which implements formatted input and output, and includes <ios>
, <istream>
and <ostream>
.<fstream>
contains the definitions of basic_ifstream
, basic_ofstream
and basic_fstream
class templates which implement formatted input, output and input/output on file streams.<sstream>
contains the definitions of basic_istringstream
, basic_ostringstream
and basic_stringstream
class templates which implement formatted input, output and input/output on string-based streams.<iomanip>
contains formatting manipulators.<iosfwd>
contains forward declarations of all classes in the input/output library.There are twelve stream buffer classes defined in the C++ language as the table.
ios_base
and basic_ios
are two classes that manage the lower-level bits of a stream. ios_base
stores formatting information and the state of the stream. basic_ios
manages the associated stream-buffer. basic_ios
is commonly known as simply ios
or wios
, which are two typedefs for basic_ios
with a specific character type. basic_ios
and ios_base
are very rarely used directly by programmers. Usually, their functionality is accessed through other classes such as iostream
which inherit them. [6] [7]
Name | description |
---|---|
ios | convenience typedef for a basic_ios working with characters of type char |
wios | convenience typedef for a basic_ios working with characters of type wchar_t |
streamoff | supports internal operations. |
streampos | holds the current position of the buffer pointer or file pointer. |
wstreampos | holds the current position of the buffer pointer or file pointer. |
streamsize | specifies the size of the stream. |
Name | Description |
---|---|
boolalpha / noboolalpha | specifies whether variables of type bool appear as true and false or as 0 and 1 in the stream. |
skipws / noskipws | specifies whether the white space is skipped in input operations |
showbase / noshowbase | specifies whether the notational base of the number is displayed |
showpoint / noshowpoint | specifies whether to display the fractional part of a floating point number, when the fractional part is zero |
showpos / noshowpos | specifies whether to display + for positive numbers |
unitbuf / nounitbuf | specifies whether the output should be buffered |
uppercase / nouppercase | specifies whether uppercase characters should be used in hexadecimal integer and floating-point output |
left / right / internal | specifies how a number should be justified |
dec / oct / hex | specifies the notation an integer number should be displayed in |
fixed / scientific /hexfloat (C++11) / defaultfloat (C++11) | specifies the notation a floating-point number should be displayed in |
This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: Talks about a header, when it should talk about input/output streams.(March 2012) |
C++ input/output streams are primarily defined by iostream
, a header file that is part of the C++ standard library (the name stands for Input/Output Stream). In C++ and its predecessor, the C programming language, there is no special syntax for streaming data input or output. Instead, these are combined as a library of functions. Like the cstdio
header inherited from C's stdio.h, iostream
provides basic input and output services for C++ programs. iostream uses the objects cin
, cout
, cerr
, and clog
for sending data to and from the standard streams input, output, error (unbuffered), and log (buffered) respectively. As part of the C++ standard library, these objects are a part of the std
namespace. [8]
The cout
object is of type ostream
, which overloads the left bit-shift operator to make it perform an operation completely unrelated to bitwise operations, and notably evaluate to the value of the left argument, allowing multiple operations on the same ostream object, essentially as a different syntax for method cascading, exposing a fluent interface. The cerr
and clog
objects are also of type ostream
, so they overload that operator as well. The cin
object is of type istream
, which overloads the right bit-shift operator. The directions of the bit-shift operators make it seem as though data is flowing towards the output stream or flowing away from the input stream.
width(int x) | minimum number of characters for next output |
fill(char x) | character used to fill with in the case that the width needs to be elongated to fill the minimum. |
precision(int x) | sets the number of significant digits for floating-point numbers |
Manipulators are objects that can modify a stream using the <<
or >>
operators.
endl | "end line": inserts a newline into the stream and calls flush. |
ends | "end string": inserts a null character into the stream and calls flush. |
flush | forces an output stream to write any buffered characters |
ws | causes an inputstream to 'eat' whitespace |
showpoint | tells the stream to show the decimal point and some zeros with whole numbers |
Other manipulators can be found using the header iomanip
.
The formatting manipulators must be "reset" at the end or the programmer will unexpectedly get their effects on the next output statement.
Some implementations of the C++ standard library have significant amounts of dead code. For example, GNU libstdc++ automatically constructs a locale when building an ostream
even if a program never uses any types (date, time or money) that a locale affects, [9] and a statically linked "Hello, World!" program that uses <iostream>
of GNU libstdc++ produces an executable an order of magnitude larger than an equivalent program that uses <cstdio>
. [10] There exist partial implementations of the C++ standard library designed for space-constrained environments; their <iostream>
may leave out features that programs in such environments may not need, such as locale support. [11]
The canonical "Hello, World!" program can be expressed as follows:
#include<iostream>intmain(){std::cout<<"Hello, world!"<<std::endl;}
This program would output "Hello, world!" followed by a newline and standard output stream buffer flush.
The following example creates a file called 'file.txt' and puts the text 'Hello, world!' followed by a newline into it.
#include<fstream>intmain(){std::ofstreamfile("file.txt");file<<"Hello, world!"<<std::endl;}
Templates are a feature of the C++ programming language that allows functions and classes to operate with generic types. This allows a function or class declaration to reference via a generic variable another different class without creating full declaration for each of these different classes.
A string literal or anonymous string is a literal for a string value in the source code of a computer program. Modern programming languages commonly use a quoted sequence of characters, formally "bracketed delimiters", as in x = "foo"
, where "foo"
is a string literal with value foo
. Methods such as escape sequences can be used to avoid the problem of delimiter collision and allow the delimiters to be embedded in a string. There are many alternate notations for specifying string literals especially in complicated cases. The exact notation depends on the programming language in question. Nevertheless, there are general guidelines that most modern programming languages follow.
In computer programming, standard streams are interconnected input and output communication channels between a computer program and its environment when it begins execution. The three input/output (I/O) connections are called standard input (stdin), standard output (stdout) and standard error (stderr). Originally I/O happened via a physically connected system console, but standard streams abstract this. When a command is executed via an interactive shell, the streams are typically connected to the text terminal on which the shell is running, but can be changed with redirection or a pipeline. More generally, a child process inherits the standard streams of its parent process.
The C programming language provides many standard library functions for file input and output. These functions make up the bulk of the C standard library header <stdio.h>. The functionality descends from a "portable I/O package" written by Mike Lesk at Bell Labs in the early 1970s, and officially became part of the Unix operating system in Version 7.
The C standard library or libc is the standard library for the C programming language, as specified in the ISO C standard. Starting from the original ANSI C standard, it was developed at the same time as the C library POSIX specification, which is a superset of it. Since ANSI C was adopted by the International Organization for Standardization, the C standard library is also called the ISO C library.
In the C++ programming language, the C++ Standard Library is a collection of classes and functions, which are written in the core language and part of the C++ ISO Standard itself.
In the C++ programming language, argument-dependent lookup (ADL), or argument-dependent name lookup, applies to the lookup of an unqualified function name depending on the types of the arguments given to the function call. This behavior is also known as Koenig lookup, as it is often attributed to Andrew Koenig, though he is not its inventor.
Modern C++ Design: Generic Programming and Design Patterns Applied is a book written by Andrei Alexandrescu, published in 2001 by Addison-Wesley. It has been regarded as "one of the most important C++ books" by Scott Meyers.
auto_ptr is a smart pointer class template that was available in previous versions of the C++ standard library, which provides some basic RAII features for C++ raw pointers. It has been replaced by the unique_ptr
class.
sizeof is a unary operator in the programming languages C and C++. It generates the storage size of an expression or a data type, measured in the number of char-sized units. Consequently, the construct sizeof (char) is guaranteed to be 1. The actual number of bits of type char is specified by the preprocessor macro CHAR_BIT, defined in the standard include file limits.h. On most modern computing platforms this is eight bits. The result of sizeof has an unsigned integer type that is usually denoted by size_t.
The C date and time functions are a group of functions in the standard library of the C programming language implementing date and time manipulation operations. They provide support for time acquisition, conversion between date formats, and formatted output to strings.
In the C++ programming language, seekg is a function in the fstream
library that allows you to seek to an arbitrary position in a file. This function is defined for ifstream class - for ofstream class there's a similar function seekp.
The C++ programming language has support for string handling, mostly implemented in its standard library. The language standard specifies several string types, some inherited from C, some designed to make use of the language's features, such as classes and RAII. The most-used of these is std::string.
In the programming language C++, unordered associative containers are a group of class templates in the C++ Standard Library that implement hash table variants. Being templates, they can be used to store arbitrary elements, such as integers or custom classes. The following containers are defined in the current revision of the C++ standard: unordered_set
, unordered_map
, unordered_multiset
, unordered_multimap
. Each of these containers differ only on constraints placed on their elements.
In the C++ programming language, placement syntax allows programmers to explicitly specify the memory management of individual objects — i.e. their "placement" in memory. Normally, when an object is created dynamically, an allocation function is invoked in such a way that it will both allocate memory for the object, and initialize the object within the newly allocated memory. The placement syntax allows the programmer to supply additional arguments to the allocation function. A common use is to supply a pointer to a suitable region of storage where the object can be initialized, thus separating memory allocation from object construction.
In the C++ programming language, <sstream> is a part of the C++ Standard Library. It is a header file that provides templates and types that enable interoperation between stream buffers and string objects.
In computing, associative containers refer to a group of class templates in the standard library of the C++ programming language that implement ordered associative arrays. Being templates, they can be used to store arbitrary elements, such as integers or custom classes. The following containers are defined in the current revision of the C++ standard: set
, map
, multiset
, multimap
. Each of these containers differ only on constraints placed on their elements.
Although C++ is one of the most widespread programming languages, many prominent software engineers criticize C++ for being overly complex and fundamentally flawed. Among the critics have been: Robert Pike, Joshua Bloch, Linus Torvalds, Donald Knuth, Richard Stallman, and Ken Thompson. C++ was widely adopted and implemented as a systems language through most of its existence, it has been used to build many pieces of very important software.
RaftLib is a portable parallel processing system that aims to provide extreme performance while increasing programmer productivity. It enables a programmer to assemble a massively parallel program using simple iostream-like operators. RaftLib handles threading, memory allocation, memory placement, and auto-parallelization of compute kernels. It enables applications to be constructed from chains of compute kernels forming a task and pipeline parallel compute graph. Programs are authored in C++.
C++23 is the informal name for the next version of the ISO/IEC 14882 standard for the C++ programming language that will follow C++20. The final draft of this version is N4950.
...endl, which flushes the output buffer and sends a newline to the standard output stream.
bits/ios_base.h