Isomorphism extension theorem

Last updated

In field theory, a branch of mathematics, the isomorphism extension theorem is an important theorem regarding the extension of a field isomorphism to a larger field.

Mathematics Field of study concerning quantity, patterns and change

Mathematics includes the study of such topics as quantity, structure, space, and change.

Theorem statement that has been proven on the basis of previously established statements in mathematics

In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and generally accepted statements, such as axioms. A theorem is a logical consequence of the axioms. The proof of a mathematical theorem is a logical argument for the theorem statement given in accord with the rules of a deductive system. The proof of a theorem is often interpreted as justification of the truth of the theorem statement. In light of the requirement that theorems be proved, the concept of a theorem is fundamentally deductive, in contrast to the notion of a scientific law, which is experimental.

Field (mathematics) algebraic structure

In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined, and behave as the corresponding operations on rational and real numbers do. A field is thus a fundamental algebraic structure, which is widely used in algebra, number theory and many other areas of mathematics.

Isomorphism extension theorem

The theorem states that given any field , an algebraic extension field of and an isomorphism mapping onto a field then can be extended to an isomorphism mapping onto an algebraic extension of (a subfield of the algebraic closure of ).

In abstract algebra, a field extension L/K is called algebraic if every element of L is algebraic over K, i.e. if every element of L is a root of some non-zero polynomial with coefficients in K. Field extensions that are not algebraic, i.e. which contain transcendental elements, are called transcendental.

In mathematics, and, in particular, in algebra, a field extension is a pair of fields such that the operations of E are those of F restricted to E. In this case, F is an extension field of E and E is a subfield of F. For example, under the usual notions of addition and multiplication, the complex numbers are an extension field of the real numbers; the real numbers are a subfield of the complex numbers.

In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics.

The proof of the isomorphism extension theorem depends on Zorn's lemma.

Zorns lemma mathematical proposition equivalent to the axiom of choice

Zorn's lemma, also known as the Kuratowski–Zorn lemma, after mathematicians Max Zorn and Kazimierz Kuratowski, is a proposition of set theory that states that a partially ordered set containing upper bounds for every chain necessarily contains at least one maximal element.

Related Research Articles

In mathematics, any vector space V has a corresponding dual vector space consisting of all linear functionals on V, together with the vector space structure of pointwise addition and scalar multiplication by constants.

Isomorphism invertible morphism

In mathematics, an isomorphism is a homomorphism or morphism that can be reversed by an inverse morphism. Two mathematical objects are isomorphic if an isomorphism exists between them. An automorphism is an isomorphism whose source and target coincide. The interest of isomorphisms lies in the fact that two isomorphic objects cannot be distinguished by using only the properties used to define morphisms; thus isomorphic objects may be considered the same as long as one considers only these properties and their consequences.

Lie group Group that is also a differentiable manifold with group operations that are smooth

In mathematics, a Lie group is a group that is also a differentiable manifold, with the property that the group operations are smooth. Lie groups are named after Norwegian mathematician Sophus Lie, who laid the foundations of the theory of continuous transformation groups.

There are several well-known theorems in functional analysis known as the Riesz representation theorem. They are named in honor of Frigyes Riesz.

In mathematics, specifically abstract algebra, the isomorphism theorems are three theorems that describe the relationship between quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and various other algebraic structures. In universal algebra, the isomorphism theorems can be generalized to the context of algebras and congruences.

In mathematics, a universal enveloping algebra is the most general algebra that contains all representations of a Lie algebra.

In mathematics, the Gelfand representation in functional analysis has two related meanings:

In mathematics, an algebraic torus is a type of commutative affine algebraic group. These groups were named by analogy with the theory of tori in Lie group theory.

In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.

In mathematics, specifically the algebraic theory of fields, a normal basis is a special kind of basis for Galois extensions of finite degree, characterised as forming a single orbit for the Galois group. The normal basis theorem states that any finite Galois extension of fields has a normal basis. In algebraic number theory, the study of the more refined question of the existence of a normal integral basis is part of Galois module theory.

In the area of mathematics known as group theory, the correspondence theorem, sometimes referred to as the fourth isomorphism theorem or the lattice theorem, states that if is a normal subgroup of a group , then there exists a bijection from the set of all subgroups of containing , onto the set of all subgroups of the quotient group . The structure of the subgroups of is exactly the same as the structure of the subgroups of containing , with collapsed to the identity element.

A locally compact quantum group is a relatively new C*-algebraic approach toward quantum groups that generalizes the Kac algebra, compact-quantum-group and Hopf-algebra approaches. Earlier attempts at a unifying definition of quantum groups using, for example, multiplicative unitaries have enjoyed some success but have also encountered several technical problems.

In mathematics, Tannaka–Krein duality theory concerns the interaction of a compact topological group and its category of linear representations. It is a natural extension of Pontryagin duality, between compact and discrete commutative topological groups, to groups that are compact but noncommutative. The theory is named for two men, the Soviet mathematician Mark Grigorievich Krein, and the Japanese Tadao Tannaka. In contrast to the case of commutative groups considered by Lev Pontryagin, the notion dual to a noncommutative compact group is not a group, but a category of representations Π(G) with some additional structure, formed by the finite-dimensional representations of G.

In algebraic geometry, a morphism between algebraic varieties is a function between the varieties that is given locally by polynomials. It is also called a regular map. A morphism from an algebraic variety to the affine line is also called a regular function. A regular map whose inverse is also regular is called biregular, and they are isomorphisms in the category of algebraic varieties. Because regular and biregular are very restrictive conditions – there are no non-constant regular functions on projective varieties – the weaker condition of a rational map and birational maps are frequently used as well.

In algebraic geometry, Graded manifolds are extensions of the concept of manifolds based on ideas coming from supersymmetry and supercommutative algebra. Both graded manifolds and supermanifolds are phrased in terms of sheaves of graded commutative algebras. However, graded manifolds are characterized by sheaves on smooth manifolds, while supermanifolds are constructed by gluing of sheaves of supervector spaces.

In mathematics and more specifically in field theory, a radical extension of a field K is an extension of K that is obtained by adjoining a sequence of nth roots of elements.

In algebra, Zariski's lemma, proved by Oscar Zariski (1947), states that, if a field K is finitely generated as an associative algebra over another field k, then K is a finite field extension of k.

In mathematics, Lie group–Lie algebra correspondence allows one to study Lie groups, which are geometric objects, in terms of Lie algebras, which are linear objects. In this article, a Lie group refers to a real Lie group. For the complex and p-adic cases, see complex Lie group and p-adic Lie group.

In mathematics, non-commutative conditional expectation is a generalization of the notion of conditional expectation in classical probability. The space of measurable functions on a -finite measure space is the canonical example of a commutative von Neumann algebra. For this reason, the theory of von Neumann algebras is sometimes referred to as noncommutative measure theory. The intimate connections of probability theory with measure theory suggest that one may be able to extend the classical ideas in probability to a noncommutative setting by studying those ideas on general von Neumann algebras.

In the theory of C*-algebras, the universal representation of a C*-algebra is a faithful representation which is the direct sum of the GNS representations corresponding to the states of the C*-algebra. The various properties of the universal representation are used to obtain information about the ideals and quotients of the C*-algebra. The close relationship between an arbitrary representation of a C*-algebra and its universal representation can be exploited to obtain several criteria for determining whether a linear functional on the algebra is ultraweakly continuous. The method of using the properties of the universal representation as a tool to prove results about the C*-algebra and its representations is commonly referred to as universal representation techniques in the literature.

References

Donald John Lewis, better known as D.J. Lewis, was an American mathematician specializing in number theory.