Jordan's inequality

Last updated
2
p
x
<=
sin
[?]
(
x
)
<=
x
for
x
[?]
[
0
,
p
2
]
{\displaystyle {\frac {2}{\pi }}x\leq \sin(x)\leq x{\text{ for }}x\in \left[0,{\frac {\pi }{2}}\right]} Jordan inequality.svg
unit circle with angle x and a second circle with radius
|
E
G
|
=
sin
[?]
(
x
)
{\displaystyle |EG|=\sin(x)}
around E.
|
D
E
|
<=
|
D
C
^
|
<=
|
D
G
^
|
=
sin
[?]
(
x
)
<=
x
<=
p
2
sin
[?]
(
x
)
=
2
p
x
<=
sin
[?]
(
x
)
<=
x
{\displaystyle {\begin{aligned}&|DE|\leq |{\widehat {DC}}|\leq |{\widehat {DG}}|\\\Leftrightarrow &\sin(x)\leq x\leq {\tfrac {\pi }{2}}\sin(x)\\\Rightarrow &{\tfrac {2}{\pi }}x\leq \sin(x)\leq x\end{aligned}}} Jordans inequality.svg
unit circle with angle x and a second circle with radius around E.

In mathematics, Jordan's inequality, named after Camille Jordan, states that [1]

Contents

It can be proven through the geometry of circles (see drawing). [2]

Notes

  1. Weisstein, Eric W. "Jordan's inequality". MathWorld .
  2. Feng Yuefeng, Proof without words: Jordan`s inequality, Mathematics Magazine, volume 69, no. 2, 1996, p. 126

Further reading