KL1

Last updated

KL1, or Kernel Language 1 is an experimental and-parallel version of KL0 developed for the ICOT Fifth Generation Computer project. KL1 is an implementation of Flat GHC (a subset of the Guarded Horn Clauses language by Kazunori Ueda), making it a parallelised Prolog variant.

Contents

Related Research Articles

In computing, a compiler is a computer program that translates computer code written in one programming language into another language. The name "compiler" is primarily used for programs that translate source code from a high-level programming language to a low-level programming language to create an executable program.

<span class="mw-page-title-main">Computer program</span> Instructions to be executed by a computer

A computer program is a sequence or set of instructions in a programming language for a computer to execute. Computer programs are one component of software, which also includes documentation and other intangible components.

Logic programming is a programming, database and knowledge-representation and reasoning paradigm which is based on formal logic. A program, database or knowledge base in a logic programming language is a set of sentences in logical form, expressing facts and rules about some problem domain. Major logic programming language families include Prolog, Answer Set Programming (ASP) and Datalog. In all of these languages, rules are written in the form of clauses:

<span class="mw-page-title-main">Programming language</span> Language for communicating instructions to a machine

A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language.

Prolog is a logic programming language associated with artificial intelligence and computational linguistics.

In computing, a virtual machine (VM) is the virtualization or emulation of a computer system. Virtual machines are based on computer architectures and provide the functionality of a physical computer. Their implementations may involve specialized hardware, software, or a combination of the two. Virtual machines differ and are organized by their function, shown here:

<span class="mw-page-title-main">Thread (computing)</span> Smallest sequence of programmed instructions that can be managed independently by a scheduler

In computer science, a thread of execution is the smallest sequence of programmed instructions that can be managed independently by a scheduler, which is typically a part of the operating system. In many cases, a thread is a component of a process.

<span class="mw-page-title-main">Wolfram Mathematica</span> Computational software program

Wolfram Mathematica is a software system with built-in libraries for several areas of technical computing that allow machine learning, statistics, symbolic computation, data manipulation, network analysis, time series analysis, NLP, optimization, plotting functions and various types of data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other programming languages. It was conceived by Stephen Wolfram, and is developed by Wolfram Research of Champaign, Illinois. The Wolfram Language is the programming language used in Mathematica. Mathematica 1.0 was released on June 23, 1988 in Champaign, Illinois and Santa Clara, California.

In computer science, a preprocessor is a program that processes its input data to produce output that is used as input in another program. The output is said to be a preprocessed form of the input data, which is often used by some subsequent programs like compilers. The amount and kind of processing done depends on the nature of the preprocessor; some preprocessors are only capable of performing relatively simple textual substitutions and macro expansions, while others have the power of full-fledged programming languages.

The Fifth Generation Computer Systems was a 10-year initiative begun in 1982 by Japan's Ministry of International Trade and Industry (MITI) to create computers using massively parallel computing and logic programming. It aimed to create an "epoch-making computer" with supercomputer-like performance and to provide a platform for future developments in artificial intelligence. FGCS was ahead of its time, and its excessive ambitions led to commercial failure. However, on a theoretical level, the project spurred the development of concurrent logic programming.

<span class="mw-page-title-main">Ehud Shapiro</span> Israeli computer scientist

Ehud Shapiro is an Israeli scientist, artist, and entrepreneur, who is Professor of Computer Science and Biology at the Weizmann Institute of Science. With international reputation, he made fundamental contributions to many scientific disciplines, laying in each a long-term research agenda by asking a novel basic question and offering a first step towards answering it, including how to computerize the process of scientific discovery, by providing an algorithmic interpretation to Karl Popper's methodology of conjectures and refutations; how to automate program debugging, by algorithms for fault localization; how to unify parallel, distributed, and systems programming with a high-level logic-based programming language; how to use the metaverse as a foundation for social networking; how to devise molecular computers that can function as smart programmable drugs; how to uncover the human cell lineage tree, via single-cell genomics; how to support digital democracy, by devising an alternative architecture to the digital realm.

<span class="mw-page-title-main">Jochen Liedtke</span> German computer scientist

Jochen Liedtke was a German computer scientist, noted for his work on microkernel operating systems, especially in creating the L4 microkernel family.

ALGOL 68C is an imperative computer programming language, a dialect of ALGOL 68, that was developed by Stephen R. Bourne and Michael Guy to program the Cambridge Algebra System (CAMAL). The initial compiler was written in the Princeton Syntax Compiler that was implemented by J. H. Mathewman at Cambridge.

In computer programming, a runtime system or runtime environment is a sub-system that exists both in the computer where a program is created, as well as in the computers where the program is intended to be run. The name comes from the compile time and runtime division from compiled languages, which similarly distinguishes the computer processes involved in the creation of a program (compilation) and its execution in the target machine.

Indeterminacy in concurrent computation is concerned with the effects of indeterminacy in concurrent computation. Computation is an area in which indeterminacy is becoming increasingly important because of the massive increase in concurrency due to networking and the advent of many-core computer architectures. These computer systems make use of arbiters which gives rise to indeterminacy.

In computer science, stream processing is a programming paradigm which views streams, or sequences of events in time, as the central input and output objects of computation. Stream processing encompasses dataflow programming, reactive programming, and distributed data processing. Stream processing systems aim to expose parallel processing for data streams and rely on streaming algorithms for efficient implementation. The software stack for these systems includes components such as programming models and query languages, for expressing computation; stream management systems, for distribution and scheduling; and hardware components for acceleration including floating-point units, graphics processing units, and field-programmable gate arrays.

Modula-2 is a structured, procedural programming language developed between 1977 and 1985/8 by Niklaus Wirth at ETH Zurich. It was created as the language for the operating system and application software of the Lilith personal workstation. It was later used for programming outside the context of the Lilith.

Concurrent logic programming is a variant of logic programming in which programs are sets of guarded Horn clauses of the form:

In computing, a compute kernel is a routine compiled for high throughput accelerators, separate from but used by a main program. They are sometimes called compute shaders, sharing execution units with vertex shaders and pixel shaders on GPUs, but are not limited to execution on one class of device, or graphics APIs.

Futhark is a functional data parallel array programming language originally developed at UCPH Department of Computer Science (DIKU) as part of the HIPERFIT project. It focuses on enabling data parallel programs written in a functional style to be executed with high performance on massively parallel hardware, in particular on graphics processing units (GPUs). Futhark is strongly inspired by NESL, and its implementation uses a variant of the flattening transformation, but imposes constraints on how parallelism can be expressed in order to enable more aggressive compiler optimisations. In particular, irregular nested data parallelism is not supported.

References

Further reading