Mathematical function
In mathematics , there are several functions known as Kummer's function . One is known as the confluent hypergeometric function of Kummer. Another one, defined below, is related to the polylogarithm . Both are named for Ernst Kummer .
Kummer's function is defined by
Λ n ( z ) = ∫ 0 z log n − 1 | t | 1 + t d t . {\displaystyle \Lambda _{n}(z)=\int _{0}^{z}{\frac {\log ^{n-1}|t|}{1+t}}\;dt.} The duplication formula is
Λ n ( z ) + Λ n ( − z ) = 2 1 − n Λ n ( − z 2 ) {\displaystyle \Lambda _{n}(z)+\Lambda _{n}(-z)=2^{1-n}\Lambda _{n}(-z^{2})} .Compare this to the duplication formula for the polylogarithm:
Li n ( z ) + Li n ( − z ) = 2 1 − n Li n ( z 2 ) . {\displaystyle \operatorname {Li} _{n}(z)+\operatorname {Li} _{n}(-z)=2^{1-n}\operatorname {Li} _{n}(z^{2}).} An explicit link to the polylogarithm is given by
Li n ( z ) = Li n ( 1 ) + ∑ k = 1 n − 1 ( − 1 ) k − 1 log k | z | k ! Li n − k ( z ) + ( − 1 ) n − 1 ( n − 1 ) ! [ Λ n ( − 1 ) − Λ n ( − z ) ] . {\displaystyle \operatorname {Li} _{n}(z)=\operatorname {Li} _{n}(1)\;\;+\;\;\sum _{k=1}^{n-1}(-1)^{k-1}\;{\frac {\log ^{k}|z|}{k!}}\;\operatorname {Li} _{n-k}(z)\;\;+\;\;{\frac {(-1)^{n-1}}{(n-1)!}}\;\left[\Lambda _{n}(-1)-\Lambda _{n}(-z)\right].} This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.