Label Distribution Protocol

Last updated
Label Distribution Protocol
Communication protocol
AbbreviationLDP
IntroductionOctober 2007;16 years ago (2007-10)
Port(s) 646
RFC(s) RFC   5036
HardwareRouters

Label Distribution Protocol (LDP) is a protocol in which routers capable of Multiprotocol Label Switching (MPLS) exchange label mapping information. Two routers with an established session are called LDP peers and the exchange of information is bi-directional. LDP is used to build and maintain label-switched path (LSP) databases that are used to forward traffic through MPLS networks.

Contents

LDP can be used to distribute the inner label (VC/VPN/service label) and outer label (path label) in MPLS. For inner label distribution, targeted LDP (tLDP) is used.

LDP and tLDP discovery runs on UDP port 646 and the session is built on TCP port 646. During the discovery phase hello packets are sent on UDP port 646 to the 'all routers on this subnet' group multicast address (224.0.0.2). However, tLDP unicasts the hello packets to the targeted neighbor's address.

LDP

LDP session establishment LDP session establishment.jpg
LDP session establishment

The Label Distribution Protocol (LDP) is a protocol defined by the IETF (RFC 5036) for the purpose of distributing labels in an MPLS environment. LDP relies on the underlying routing information provided by an IGP in order to forward label packets. The router forwarding information base, or FIB, is responsible for determining the hop-by-hop path through the network. Unlike traffic-engineered paths, which use constraints and explicit routes to establish end-to-end LSPs, LDP is used only for signaling best-effort LSPs.

Authentication

LDP sessions carried over TCP can be authenticated using the TCP MD5 Authentication Option. While the IETF considers the TCP MD5 Authentication Option deprecated in favor of the algorithm-independent TCP Authentication Option, in practice the TCP MD5 Authentication Option is much more widely available in commercial routers as of July 2023. Use of authenticated LDP-over-TCP helps provide strong integrity protection against misconfigured would-be LDP peers.[ citation needed ]

T-LDP

Targeted LDP sessions are different because during the discovery phase hellos are unicast to the LDP peer rather than using multicast. A consequence of this is that tLDP can be set up between non-directly connected peers whereas non-targeted LDP peers must be on the same subnet. tLDP may still be used between connected peers if desired.

On a router running TiMOS when an SDP (Service Distribution Path) is configured, automatic ingress and egress labeling (targeted LDP) is enabled by default and ingress and egress "service" labels are signaled over a TLDP connection. If signaling is turned off on an SDP, ingress and egress “service” labels must be manually configured when the SDP is bound to a service.[ citation needed ]

RSVP-TE

This method determines a path through the network based on the interior gateway protocol's view of the network. If no constraints are applied to the LSP then the routers simply send the request for a path to the active next hop for that destination, without explicit routing. The IGP at each router is free to select active next hops based on the link state database.

See also

Related Research Articles

Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on labels rather than network addresses. Whereas network addresses identify endpoints the labels identify established paths between endpoints. MPLS can encapsulate packets of various network protocols, hence the multiprotocol component of the name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.

Intermediate System to Intermediate System is a routing protocol designed to move information efficiently within a computer network, a group of physically connected computers or similar devices. It accomplishes this by determining the best route for data through a packet switching network.

<span class="mw-page-title-main">IP address spoofing</span> Creating IP packets using a false IP address

In computer networking, IP address spoofing or IP spoofing is the creation of Internet Protocol (IP) packets with a false source IP address, for the purpose of impersonating another computing system.

Open Shortest Path First (OSPF) is a routing protocol for Internet Protocol (IP) networks. It uses a link state routing (LSR) algorithm and falls into the group of interior gateway protocols (IGPs), operating within a single autonomous system (AS).

The Routing Information Protocol (RIP) is one of the oldest distance-vector routing protocols which employs the hop count as a routing metric. RIP prevents routing loops by implementing a limit on the number of hops allowed in a path from source to destination. The largest number of hops allowed for RIP is 15, which limits the size of networks that RIP can support.

<span class="mw-page-title-main">Routing table</span> Data table stored in a router that lists the routes to network destinations

In computer networking, a routing table, or routing information base (RIB), is a data table stored in a router or a network host that lists the routes to particular network destinations, and in some cases, metrics (distances) associated with those routes. The routing table contains information about the topology of the network immediately around it.

<span class="mw-page-title-main">Anycast</span> Network addressing and routing methodology

Anycast is a network addressing and routing methodology in which a single IP address is shared by devices in multiple locations. Routers direct packets addressed to this destination to the location nearest the sender, using their normal decision-making algorithms, typically the lowest number of BGP network hops. Anycast routing is widely used by content delivery networks such as web and name servers, to bring their content closer to end users.

The Resource Reservation Protocol (RSVP) is a transport layer protocol designed to reserve resources across a network using the integrated services model. RSVP operates over an IPv4 or IPv6 and provides receiver-initiated setup of resource reservations for multicast or unicast data flows. It does not transport application data but is similar to a control protocol, like Internet Control Message Protocol (ICMP) or Internet Group Management Protocol (IGMP). RSVP is described in RFC 2205.

Virtual Private LAN Service (VPLS) is a way to provide Ethernet-based multipoint to multipoint communication over IP or MPLS networks. It allows geographically dispersed sites to share an Ethernet broadcast domain by connecting sites through pseudowires. The term sites includes multiplicities of both servers and clients. The technologies that can be used as pseudo-wire can be Ethernet over MPLS, L2TPv3 or even GRE. There are two IETF standards-track RFCs describing VPLS establishment.

Bidirectional Forwarding Detection (BFD) is a network protocol that is used to detect faults between two routers or switches connected by a link. It provides low-overhead detection of faults even on physical media that doesn't support failure detection of any kind, such as Ethernet, virtual circuits, tunnels and MPLS label-switched paths.

Constraint-based Routing Label Distribution Protocol (CR-LDP) is a control protocol used in some computer networks. As of February 2003, the IETF MPLS working group deprecated CR-LDP and decided to focus purely on RSVP-TE.

Resource Reservation Protocol - Traffic Engineering (RSVP-TE) is an extension of the Resource Reservation Protocol (RSVP) for traffic engineering. It supports the reservation of resources across an IP network. Applications running on IP end systems can use RSVP to indicate to other nodes the nature of the packet streams they want to receive. RSVP runs on both IPv4 and IPv6.

An ingress router is a label switch router that is a starting point (source) for a given label-switched path (LSP). An ingress router may be an egress router or an intermediate router for any other LSP(s). Hence the role of ingress and egress routers is LSP specific. Usually, the MPLS label is attached with an IP packet at the ingress router and removed at the egress router, whereas label swapping is performed on the intermediate routers. However, in special cases the ingress router could be pushing label in label stack of an already existing MPLS packet. Note that, although the ingress router is the starting point of an LSP, it may or may not be the source of the under-lying IP packets.

A forwarding information base (FIB), also known as a forwarding table or MAC table, is most commonly used in network bridging, routing, and similar functions to find the proper output network interface controller to which the input interface should forward a packet. It is a dynamic table that maps MAC addresses to ports. It is the essential mechanism that separates network switches from Ethernet hubs. Content-addressable memory (CAM) is typically used to efficiently implement the FIB, thus it is sometimes called a CAM table.

In network routing, the control plane is the part of the router architecture that is concerned with drawing the network topology, or the information in a routing table that defines what to do with incoming packets. Control plane functions, such as participating in routing protocols, run in the architectural control element. In most cases, the routing table contains a list of destination addresses and the outgoing interface(s) associated with each. Control plane logic also can identify certain packets to be discarded, as well as preferential treatment of certain packets for which a high quality of service is defined by such mechanisms as differentiated services.

TRILL is an Internet Standard implemented by devices called TRILL switches. TRILL combines techniques from bridging and routing, and is the application of link-state routing to the VLAN-aware customer-bridging problem. Routing bridges (RBridges) are compatible with and can incrementally replace previous IEEE 802.1 customer bridges. TRILL Switches are also compatible with IPv4 and IPv6, routers and end systems. They are invisible to current IP routers, and like conventional routers, RBridges terminate the broadcast, unknown-unicast and multicast traffic of DIX Ethernet and the frames of IEEE 802.2 LLC including the bridge protocol data units of the Spanning Tree Protocol.

An egress router is a label switch router that is an end point (drain) for a given label-switched path (LSP). An egress router may be an ingress router or an intermediate router for any other LSP(s). Hence the role of egress and ingress routers is LSP specific. Usually, the MPLS label is attached with an IP packet at the ingress router and removed at the egress router, whereas label swapping is performed on the intermediate routers.

Generalized Multi-Protocol Label Switching (GMPLS) is a protocol suite extending MPLS to manage further classes of interfaces and switching technologies other than packet interfaces and switching, such as time-division multiplexing, layer-2 switching, wavelength switching and fiber-switching.

Path protection in telecommunications is an end-to-end protection scheme used in connection oriented circuits in different network architectures to protect against inevitable failures on service providers’ network that might affect the services offered to end customers. Any failure occurred at any point along the path of a circuit will cause the end nodes to move/pick the traffic to/from a new route. Finding paths with protection, especially in elastic optical networks, was considered a difficult problem, but an efficient and optimal algorithm was proposed.

Deterministic Networking (DetNet) is an effort by the IETF DetNet Working Group to study implementation of deterministic data paths for real-time applications with extremely low data loss rates, packet delay variation (jitter), and bounded latency, such as audio and video streaming, industrial automation, and vehicle control.

References