In algebraic geometry, Le Potier's vanishing theorem is an extension of the Kodaira vanishing theorem, on vector bundles. The theorem states the following [1] [2] [3] [4] [5] [6] [7] [8] [9]
Le Potier (1975): Let X be a n-dimensional compact complex manifold and E a holomorphic vector bundle of rank r over X, here is Dolbeault cohomology group, where denotes the sheaf of holomorphic p-forms on X. If E is an ample, then
- for .
from Dolbeault theorem,
- for .
By Serre duality, the statements are equivalent to the assertions:
- for .
In case of r = 1, and let E is an ample (or positive) line bundle on X, this theorem is equivalent to the Nakano vanishing theorem. Also, Schneider (1974) found another proof.
Sommese (1978) generalizes Le Potier's vanishing theorem to k-ample and the statement as follows: [2]
Le Potier–Sommese vanishing theorem: Let X be a n-dimensional algebraic manifold and E is a k-ample holomorphic vector bundle of rank r over X, then
- for .
Demailly (1988) gave a counterexample, which is as follows: [1] [10]
Conjecture of Sommese (1978): Let X be a n-dimensional compact complex manifold and E a holomorphic vector bundle of rank r over X. If E is an ample, then
- for is false for